An ion exchange method to produce metastable wurtzite metal sulfide nanocrystals

Submitted by Janet Schrenk / University of Massachusetts Lowell on Sat, 06/03/2017 - 11:25
Description

In this literature discussion, students use a paper from the literature to explore the synthesis, structure, characterization (powder XRD, EDS and TEM) and energetics associated with the production of a metastable wurtzite CoS phase. Students also are asked define key terms and acronyms used in the paper; identify the goal of the experiments and determine if the authors met their goal. They examine the fundamental concepts around the key crystal structures available.  

 

Quantum Dot Growth Mechanisms

Submitted by Chi / United States Military Academy on Sat, 06/03/2017 - 11:01
Description

This literature article covers a range of topics introduced in a sophomore level course (confinement/particle-in-a-box, spectroscopy, kinetics, mechanism) and would serve as a an end-of-course integrated activity, or as a review activity in an upper level course.

Fivefold Bonding in a Cr(I) Dimer Updated and Expanded

Submitted by T Brown / SUNY Oswego on Sat, 06/03/2017 - 10:46
Description

This paper describes the synthesis and characterization of a Cr(I) dimer with a very short Cr-Cr distance. Computational studies support fivefold bonding between the chromium atoms. This paper could be used to introduce metal-metal multiple bonds and discuss the molecular orbital interactions of homonuclear diatomics including d-orbitals. More generally, it is a nice example to stimulate the discussion of what constitutes a bond and the various interpretations of bond order.

Ligand based reductive elimination from a thorium compound

Submitted by Chip Nataro / Lafayette College on Tue, 05/23/2017 - 16:52
Description

This literature discussion is based on a paper describing the ligand-based reductive elimination of a diphosphine from a thorium compound (Organometallics2017, ASAP). The thorium compound contains two bidentate NHC ligands providing an opportunity to discuss the coordination of these ligands. The ligand-based reduction is very subtle and would be challenging for students to pick up without some guidance. The compound undergoing reductive elimination also presents an excellent introduction into magnetic nonequivalence and virtual coupling.

Nanomaterials for Carbon Dioxide Reduction

Submitted by Anne Bentley / Lewis & Clark College on Mon, 03/27/2017 - 12:58
Description

This literature discussion is based on an article describing the use of copper nanoparticles on an N-doped textured graphene material to carry out the highly selective reduction of CO2 to ethanol (Yang Song et al., “High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle / N-Doped Graphene Electrode” ChemistrySelect 2016, 1, 6055-6061.  DOI: 10.1002/slct.201601169). The article provides a good introduction to the concepts of electrochemical reduction, selectivity and recycling of fossil fuels.

In-class peer review

Submitted by Chantal Stieber / Cal Poly Pomona on Fri, 03/03/2017 - 17:15
Description

This activity includes questions for students to answer to help guide them through the process of peer review. It was designed to assist students in writing peer reviews for research reports written by their classmates, but could be applied to literature articles as well.