Metal-Ligand Multiple Bonds and Frustrated Lewis Pairs

Submitted by Matt Whited / Carleton College on Wed, 10/10/2012 - 14:40
Description

This is a literature-based activity that focuses on a review I recently published as part of a thematic series on C-H activation.

The review highlights similarities between the newly discovered frustrated Lewis pairs and polarized metal-ligand multiple bonds.  There are many ways to use the review, but the attached set of questions focuses on drawing analogies among seemingly diverse types of reactivity using frontier-molecular-orbital considerations.

High Energy Density Materials: A laboratory and literature investigation (Christe)

Submitted by Kevin Hoke / Berry College on Fri, 07/13/2012 - 21:12
Description

The synthesis of the nitrogen triiodide ammoniate shock-sensitive explosive is a simple laboratory exercise, but it does require a lengthy time for the material to dry before it is active.  This activity uses that time to have students investigate some simple thermodynamics behind their explosive, as well as consult the literature on high energy density materials from the work of Karl O. Christe.

There is also a shorter version of the activity posted as an in-class activity that omits most of the literature investigation.

VIPEr Screencast

Submitted by Chip Nataro / Lafayette College on Wed, 05/09/2012 - 10:27
Description

This screencast is a brief introduction to some of the features of VIPEr.

19F NMR In-class exercise

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 04/04/2011 - 12:27
Description

This is an in class activity to introduce the topic of multinuclear NMR, which is not covered (beyond 13C) in our sophomore level organic course. It is designed to walk the students through the process of predicting NMR spectra, as they learned in sophomore organic chemistry, but for a different I=1/2 nucleus, in this case 19F, which is I=1/2 and 100% abundant. 

 

The [XeF]+ Cation and Ion-Pairing in [MF6]– and [M2F11]– Salts (M = As, Sb, Bi)

Submitted by Maggie Geselbracht / Reed College on Sat, 03/19/2011 - 17:53
Description

This Lewis structure and VSEPR problem is based on a paper from Inorganic Chemistry in 2010 reporting the crystal structures of a series of salts of the [XeF]+ cation.  The [MF6] and [M2F11] anions (M = As, Sb, Bi) were used as counterions, and in all cases, the [XeF]+ cation interacts with the anion via a weak bond between the Xe and a fluoride of the anion to form an ion-pair in the crystalline solid.  These somewhat unusual ions provide an interesting application of the predictive powers of Lewis stru

The Extremely Explosive Carbonyl Diazide Molecule

Submitted by Maggie Geselbracht / Reed College on Sat, 03/19/2011 - 17:03
Description

This Lewis structure and VSEPR problem is based on a paper from Inorganic Chemistry in 2010 reporting the crystal structure of the carbonyl diazide molecule.  This relatively simple molecule provides an interesting application of the predictive powers of Lewis structures and VSEPR theory to molecular structure, backed up by experimental data on bond distances and bond angles.  Before tackling carbonyl diazide, the students warm up by considering the structures of hydrogen azide and the isolated azide ion.  The reference to the original paper is

Pigment Syntheses and Qualitative Analysis

Submitted by Rebecca M. Jones / George Mason University on Wed, 03/09/2011 - 15:13
Description

This set of experiments provides an introduction to simple inorganic synthesis and qualitative analysis of inorganic pigments.  I have taught this series of experiments in my first semester junior level inorganic class for the past 5 years.  In part 1, students synthesize five inorganic pigments.  Part 2 involves identifying an unknown inorganic white pigment by chemical and physical tests.  These

Student Literature-Based Organometallic Lecture

Submitted by Jeffrey Rood / Elizabethtown College on Mon, 01/03/2011 - 14:42
Description
I taught an advanced inorganic chemistry course for the first time this past fall. I focused strictly on organometallic chemistry and we used Spessard and Miessler's book. Because this book is focused on transition metal organometallics, I wanted the students to appreciate some of the organometallic chemistry of the s- and p-block (and zinc). Students worked in pairs (the class size was 12) and had most of the semester to research the literature and develop a 40-50 minute lecture. I also had them develop homework questions and an in class activity to help engage the other students.

First Isolation of the AsP3 Molecule

Submitted by Anne Bentley / Lewis & Clark College on Fri, 09/03/2010 - 13:47
Description

Early in 2009, Christopher Cummins’ group at MIT reported (in Science) the synthesis of AsP3, a compound that had never been isolated at room temperature.  Later that year, a full article was published in JACS comparing the properties and reactivity of AsP3 to those of its molecular cousins, P4 and As4.  The longer article is full of possibilities for discussion in inorganic chemistry courses, with topics including periodic trends, NMR, vibrational spectroscopy, electrochemistry, molecular orbital theory, and coordination chemistry.