Cobalt-Ammine complexes and theories of bonding in metals

Submitted by EGunn / Simmons College on Mon, 01/12/2015 - 12:54
Description

This is a two-week lab in which students synthesize and then characterize three Werner cobalt complexes using IR, UV/VIS and computer calculations using Spartan. Syntheses are based on procedures from:

Angelici, R. J. Synthesis and Technique in Inorganic Chemistry. University Science Books, 1996, pp 13-17.

Borer, L.L.; Erdman, H.W.; Norris, C.; Williams, J.; Worrell, J. Synthesis of trans-Tetraamminedichlorocobalt (III) chloride, Inorganic Syntheses, Vol 31, 1997, pp 270-271.

The Importance of the Trans Effect in the Synthesis of Novel Anti-Cancer Complexes

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Mon, 01/05/2015 - 15:04
Description

In this activity, students apply knowledge of the trans effect to the synthesis of planar Pt(II) complexes that contain cis-amine/ammine motifs.  These complexes are of interest as both potential novel chemotherapeutic Pt(II) complexes and as intermediates for promising chemotherapeutic drugs such as satraplatin.  The questions in this LO are based on recent research described in the paper “Improvements in the synthesis and understanding of the iodo-bridged intermediate en route to the Pt(IV) prodrug satraplatin,” by Timothy C. Johnstone and Stephen C.

The Color and Electronic Configurations of Prussian Blue

Submitted by EGunn / Simmons College on Mon, 01/05/2015 - 14:47
Description

I used this paper to illustrate several course concepts related to materials structure (crystal lattice structure, coordination number, crystal field theory and orbital splitting, symmetry, electronic spectra, allowed and forbidden transitions). This activity was paired with a laboratory experiment (see related VIPEr objects) in which students synthesized Prussian Blue, and gave students a really in-depth look at what was going on when they mixed those solutions together.

d-Orbital Splitting Patterns in a Variety of Ligand Geometries

Submitted by Anthony L. Fernandez / Merrimack College on Mon, 12/29/2014 - 10:43
Description

In this activity, the provided d orbital splitting patterns need to be matched with ligand geometries. Students are provided with the d orbital splitting diagrams for 6 ligand geometries (octahedral, trigonal bipyramidal, square pyramidal, tetrahedral, square planar, and linear). A web browser is used to view an animation (developed by Flick Coleman) which allows for the visualization of the relationship between the positions of the metal d orbitals and the ligands. Given this information, students should then be able to qualitatively rank the orbitals from highest to lowest energy.

Literature Discussion of Hexamminecobalt(III) – Probing Metal Ion Binding Sites in Nucleic Acids by NMR Spectroscopy

Submitted by EGunn / Simmons College on Tue, 12/09/2014 - 13:56
Description

I use this literature discussion in my second year inorganic class as a follow-up to a lab experiment where students synthesize Werner complexes and then (with much guidance) analyze their IR spectra using symmetry and group theory arguments. This paper provides an excellent example of how cobalt complexes are used in modern applications, and serves as a bridge to bioinorganic chemistry, which is a central feature later in the course.

Thinking about Mechanisms of Metal Ion Exchange

Submitted by Chris Goldsmith / Auburn University on Wed, 11/12/2014 - 12:03
Description

Over the past several years, I've been doing this in-class exercise shortly after discussing mechanisms of ligand exchange. The exercise expands on the lecture material by having the students think about metal ions, rather than ligands, exchanging from a coordination complex. The students are encouraged to work in groups of 3-5 and actively discuss the material amongst themselves before we go over it as a class. I do not provide the students with the article ahead of time, so that they may come up with their own conclusions, as opposed to simply repeating those of the authors.

Five Slides about Spectroelectrochemistry (SEC)

Submitted by Kyle Grice / DePaul University on Tue, 09/23/2014 - 11:49
Description

This "Five slides about" is meant to introduce faculty and/or students to Spectroelectrochemistry (SEC), a technique that is used in inorganic chemistry research and other areas. SEC is a powerful tool to examine species that are normally hard to synthesize and isolate due to instability and high reactivity. Papers with examples of SEC techniques are provided on the last slide. 

 

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

Ligand Lineup

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Fri, 08/22/2014 - 11:40
Description

This is a kinesthetic activity in which students must utilize knowledge of the σ-donating, π-donating and π-accepting ability of ligands in order to rank the ligands in the spectrochemical series.  Students are each assigned a ligand on a card.  Suggested ligands are I-, Br-, Cl-, F-, ONO-, NO2- OH-, H2O, pyridine, NH3, ethylenediamine, bipyridine, phenanthroline, PPh3, CN- and CO.  Each student must evaluate the π-accepting, π-donating and σ-donating ability o

A Tale of Two Structures

Submitted by Chip Nataro / Lafayette College on Tue, 08/12/2014 - 10:32
Description

In this activity, students will compare and contrast two closely related structures, [Pd(dcpf)PR3]2+ (dcpf = 1,1'-bis(dicyclohexylphosphino)ferrocene; R = Me or Ph). They will be required to obtain the cif files from the supporting information of a paper. They will then make a variety of measurments in the two stuctures. These measurements can be made using a variety of different freely available programs. Instructions are provided for Mercury 3.3 and Olex2. Finally, students will be required to provide a rationale for the differences in the two structures.