X-ray Crystallography

Submitted by David J Harding / Walailak University on Thu, 12/15/2016 - 22:58
Description

The website shared here includes excellent simulations concerning a wide variety of techniques commonly used in materials science and inorganic chemistry. I have found it particularly useful for X-ray crystallography as the simulations help understand the lectures. 

Molecular Hydrogen Complexes of Mo and W

Submitted by Kyle Grice / DePaul University on Fri, 11/11/2016 - 19:28
Description

Literature discussion about the first examples of molecular hydrogen complexes isolated by Gregory J. Kubas in the early 80s. The questions are divided into groups with two levels of difficulty.

The more basic group of questions includes topics on:

1)      Coordination Chemistry: electron count, geometry, oxidation state, orbital interactions, types of ligands, binding modes, cis/trans and fac/mer isomers.

2)      Symmetry elements and point groups.

3)      Basic concepts on spectroscopy: NMR, Raman, IR, UV/Vis, XANES, EXAFS, neutron and X-ray diffraction

Ethylene compounds of the coinage metals

Submitted by Chip Nataro / Lafayette College on Mon, 10/17/2016 - 12:55
Description

This is a literature discussion based on a short paper on ethylene compounds of the coinage metals (Dias, H. V. R.; Wu, J. Organometallics 2012, 31, 1511-1517). In this paper, analogous ethylene compounds are prepared with Cu(I), Ag(I) and Au(I). The other ligand on the coinage metal is a scorpionate tris(pyrazolyl)borate ligand. The strength of the interaction between the metal and the ethylene varies significantly with the coinage metal as seen in X-ray crystallographic and spectroscopic (1H and 13C NMR) data.

Oxorhenium(V) Methyl, Benzyl, and Phenyl Complexes: New Mechanism for Carbonyl Insertion

Submitted by Matthew Riehl / Minnesota State University, Mankato on Thu, 06/30/2016 - 20:59
Description

The article “Synthesis and Reactivity of Oxorhenium(V) Methyl, Benzyl, and Phenyl Complexes with CO; Implications for a Unique Mechanism for Migratory Insertion,” Robbins, LK; Lilly, CP; Smeltz, JL; Boyle, PD; Ison, EA;, Organometallics 2015, 34, 3152-3158 is an interesting read for students studying reaction mechanisms of organometallic complexes.  The reading guide directs students to the sections of the paper that support the question posed in the Discussion Questions document. 

Building Molecular Orbitals for a Square Pyramidal Oxorhenium(V) Complex

Submitted by M. Watzky / University of Northern Colorado on Thu, 06/30/2016 - 17:21
Description

This activity guides students into building a Molecular Orbital diagram, which focuses on metal-centered orbitals of mostly d character, for a square pyramidal complex that includes different types of ligands. Students are then asked to "fill" the resulting orbitals with metal d electrons, and examine the stability of the complex.

Ligand Design for Selectivity and Complex Stability

Submitted by Daniel Kissel / Lewis University on Wed, 06/29/2016 - 00:49
Description

This is an overview of some important principles of ligand design. Topics covered include HSAB theory, the chelate effect, the chelate ring size effect, the macrocyclic effect, the cryptate effect, and steric focus in ligand design.

Online Homework for a Foundations of Inorganic Chemistry Course

Submitted by Sabrina Sobel / Hofstra University on Mon, 06/27/2016 - 18:08
Description

The Committee on Professional Training (CPT) has restructured accreditation of Chemistry-related degrees, removing the old model of one year each of General, Analytical, Organic, and Physical Chemistry plus other relevant advanced classes as designed by the individual department. The new model (2008) requires one semester each in the five Foundation areas: Analytical, Inorganic, Organic, Biochemistry and Physical Chemistry, leaving General Chemistry as an option, with the development of advanced classes up to the individual departments.

Determining transition metal oxidation states: Recognizing bond metal-ligand types

Submitted by Brandon Quillian / Georgia Southern University on Mon, 06/27/2016 - 16:43
Description

In this in-class activity, students will determine the formal oxidation state of transition metal complexes by performing bonding type analysis of ligand−metal bonds. This in-class project is intended for those with little background in inorganic chemistry and aims to provide simple methods to calculate the formal charge of transition metals through bond-type analysis. While there are more sophisticated models already available to assign transition metal oxidation states, such as the LXZ (CBC) model, this exercise is intended for students who are coordination chemistry novices.

"Flipped Laboratory": A Discussion-based Electrochemistry Experiment for General Chemistry

Submitted by Samuel Esarey / University of Michigan on Mon, 06/27/2016 - 16:43
Description

This learning object is aimed at getting students to think critically about the data they collect in lab as they collect the data similar to how chemists typically conduct research.  They will be given a pre-lab video and a procedure prior to lab, conduct the experiment, and then upload their data to an Excel spreadsheet.  Students will then stay in their group to discuss the questions given to them on the worksheet in class with the instructor, and are allowed to continue working on them as a group up until the due date.