Guided Literature Discussion of “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines”

Submitted by M. Watzky / University of Northern Colorado on Wed, 01/16/2019 - 19:11
Description

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Jana Forster and Kristofer Reiser.  It is based on the article “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines” by Christopher F. Bender, Timothy J. Brown, and Ross A. Widenhoefer in Organometallics 2016 35 (2), 113-125.

Venn Diagram activity- What is inorganic Chemistry?

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 01/03/2019 - 18:02
Description

This Learning Object came to being sort of (In-)organically on the first day of my sophomore level intro to inorganic course. As I always do, I started the course with the IC Top 10 First Day Activity. (https://www.ionicviper.org/classactivity/ic-top-10-first-day-activity).  One of the pieces of that In class activity asks students- novices at Inorganic Chemistry- to sort the articles from the Most Read Articles from Inorganic Chemistry into bins of the various subdisciplines of Inorganic Chemistry.

5-ish Slides about Enemark-Feltham Notation

Submitted by Kyle Grice / DePaul University on Thu, 11/08/2018 - 22:00
Description

This is a basic introduction to Enemark-Feltham that can be used in conjunction with any literature that has Iron nitrosyls in it. I made this as a follow up to the work that came ouf of the 2018 VIPEr workshop in UM-Dearborn. 

Getting to Know the MetalPDB
Description

When teaching my advanced bioinorganic chemistry course, I extensively incorporate structures from Protein Data Bank in both my assignments and classroom discussions and mini-lectures.

Anthony L. Fernandez / Merrimack College Fri, 07/06/2018 - 11:29
Modeling of the Flavodiiron Nitric Oxide Reductase Active Site Literature Discussion- Bioinorganic focus
Description

This is a literature discussion based on a 2018 Inorganic Chemistry paper from the Lehnert group titled “Mechanism of N–N Bond Formation by Transition Metal–Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases“(DOI: 10.1021/acs.inorgchem.7b02333).

Sarah Shaner / Southeast Missouri State University Sat, 06/23/2018 - 11:33

Bonding and MO Theory in Flavodiiron Nitrosyl Model Complexes - Advanced Level

Submitted by Cassie Lilly / NCSU on Sat, 06/23/2018 - 11:20
Description

The activity is designed to be a literature discussion based on Nicolai Lehnert's Inorganic Chemistry paper, Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases.  The discussion questions are designed for an advanced level inorganic course. 

 

Bonding and MO Theory in Flavodiiron Nitrosyl Model Complexes - Foundation Level

Submitted by James F. Dunne / Central College on Fri, 06/22/2018 - 22:31
Description

This acitivty is a foundation level discussion of the Nicolai Lehnert paper, "Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases".  Its focus lies in discussing MO theory as it relates to Lewis structures, as well as an analysis of the strucutre of a literature paper.