VIPEr Fellows 2019 Workshop Favorites
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
This is the set of guidelines provided for authors by Nature Research. A 6-page PDF gives explicit guidance about rendering molecules using chemical drawing software, and a downloable ChemDraw template (.cds) is provided.
This presentation is meant to be a review of applying VSEPRup to steric number 6. It's designed to be viewed as a powerpoint and printed out to keep for the student's notebook.
It can be used at multiple levels: as a review immediately after learning VSEPR in general chemistry, or as a refresher before starting upper level inorganic chemistry. The instructor could add text or voice over the slides to add more detail or leave the presentation as is for students.
This presentation is meant to be a review of constructing and utilizing an MO diagram, in this case O2. It's designed to be viewed as a powerpoint and printed out to keep for the student's notebook.
It can be used at multiple levels: as a review immediately after learning MO theory in general chemistry, or as a refresher before starting upper level inorganic chemistry. The instructure could add text or voice over the slides to add more detail or leave the presentation as is for students.
Guided reading and in-class discussion questions for "High-Spin Square-Planar Co(II) and Fe(II) Complexes and Reasons for Their Electronic Structure."
This literature discussion aims to have students in an advanced inorganic chemistry course interpret reaction schemes and electronic spectra, relate chemical formulae to molecular structure, and gain an understanding of how inorganic synthesis is planned and executed. Students should gain an understanding of how counterions and crown ethers affect structure. Question 7 may be expanded to ask students to why pi-donor ability affects ligand field splitting, or as an introfuction to this topic.
An associated 1FLO based on this paper is linked in the related content.
This 1FLO asks students to interpret an electronic spectrum of 5 NiX4
This paper in Science reports the synthesis of decamethyldizincocene, a stable compound of Zn(I) with a zinc-zinc bond. In the original LO, the title compound and the starting material, bis(pentamethylcyclopentadienyl)zinc, offer a nice link to metallocene chemistry, electron counting, and different modes of binding of cyclopentadienyl rings as well as more advanced discussions of MO diagrams.
Four pairs of students represent quadruple bonding in metal complexes by "forming bonds" with a variety of physical methods involving actions like facing each other while holding hands (sigma bond), touch hands and feet of their partner "above and below" the plane (two pi bonds), touching hands and feet while facing each other (delta bond). This results in a "Twister"-like pile of students resembling the quadruple bonding interaction
This is the fifth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).