Shape & Polarity Review with Clickers

Submitted by Jim Kirby / Quinnipiac University on Tue, 07/07/2015 - 00:01
Description

A set of questions to be used in General or Introductory Inorganic Chemistry as a review or “quiz” of shapes and polarities.

How to Determine the Irreducible Representation of a MO

Submitted by Richard Lord / Grand Valley State University on Wed, 07/01/2015 - 13:42
Description

Five slides about how to systematically determine the irreducible representation if provided an unlabeled SALC. These slides focus on molecular orbitals, but this tool can be extended to any kind of SALC.

Advanced Inorganic Chemistry Course Videos

Submitted by Kathryn Haas / Saint Mary's College, Notre Dame, IN on Wed, 07/01/2015 - 12:02
Description

At this website, you will find a link to the syllabus and all lecture videos for a "flipped" version of an Advanced Inorganic Chemistry Course taught at Saint Mary's College (Notre Dame, IN).  I used Shiver & Atkins for this course, and the format is based off of Dr. Franz's course at Duke.  If anyone is interested in the problem sets, I will be happy to share, although much of the material I used is from VIPEr.  

Vibrational Modes and IR Spectra using Character Tables

Submitted by Karen McFarlane Holman / Willamette University on Tue, 06/30/2015 - 15:35
Description

In this activity, students in my upper-level Inorganic course are given two possible structures of sulfur dioxide, and based on an assessment of given vibrational modes, they determine which of the modes are IR active by two methods: (1) the “Intro Chem” method (determing whether the dipole moment changes for a particular vibrational mode) and (2) using character tables. They compare their assessment to experimental IR absorption peaks, and the students decide which structure is valid. For those of you who teach Raman spectroscopy, it could be included in this LO as well. 

High Energy Density Materials: Bond enthalpy and safety considerations (Christe)

Submitted by Kevin Hoke / Berry College on Mon, 06/29/2015 - 15:00
Description

This is a shorter version of a previously published Learning Object. This version focuses on bond enthalpy calculations and has students think about the risks and safety precautions for the synthesis of an explosive material (nitrogen triiodide). 

There is also a longer version of this activity posted as a literature dicussion.

Lewis Structure Challenge

Submitted by David Laviska / Seton Hall University on Mon, 06/29/2015 - 14:24
Description

This in-class activity is designed to give general chemistry students practice with drawing Lewis structures. Small groups of 3-5 students compete for points by creating hypothetical molecules that meet criteria (numbers of elements and atoms) assigned by the professor. Beginning with simple molecules, the basic challenge format calls for increasingly complex criteria in successive rounds of competition. One optional variation also allows student groups to challenge each other for bonus points.

Web Resources from the 2013 Inorganic Curriculum Survey

Submitted by Barbara Reisner / James Madison University on Wed, 06/10/2015 - 10:49

 

In the 2013 Inorganic Curriculum Survey, respondents were asked about the resources they used when they teach inorganic chemistry. About 20% of respondents selected "other" and provided information about these resources. A number of people mentioned specific websites. This collection consists of the websites submitted in the survey.

Play-Doh Molecular Orbitals

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Mon, 02/02/2015 - 13:56
Description

This is a simple activity designed to help students visualize the interaction of atomic orbitals to form molecular orbitals.  Students construct atomic orbitals out of Play-Doh and determine whether overlap of a given pairs of atomic orbitals along the specified axis can result in a σ, π, or δ interaction or no net interaction.  I do this activity following a reading assignment and lecture on the formation of molecular orbitals from atomic orbitals that cover the various types of interactions.  Students then work in groups of 3-4 to complete the instructions described on the attached worksh

d-Orbital Splitting Patterns in a Variety of Ligand Geometries

Submitted by Anthony L. Fernandez / Merrimack College on Mon, 12/29/2014 - 10:43
Description

In this activity, the provided d orbital splitting patterns need to be matched with ligand geometries. Students are provided with the d orbital splitting diagrams for 6 ligand geometries (octahedral, trigonal bipyramidal, square pyramidal, tetrahedral, square planar, and linear). A web browser is used to view an animation (developed by Flick Coleman) which allows for the visualization of the relationship between the positions of the metal d orbitals and the ligands. Given this information, students should then be able to qualitatively rank the orbitals from highest to lowest energy.

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25