VIPEr Fellows 2019 Workshop Favorites
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
This guide, available in print, online and in an app, allows users to look up appropriate catalysts and conditions to accomplish a wide variety of reactions.
This is a great new textbook by George Luther III from the University of Delaware. The textbook represents the results of a course he has taught for graduate students in chemical oceanography, geochemistry and related disciplines. It is clear that the point of the book is to provide students with the core material from inorganic chemistry that they will need to explain inorganic processes in the environment.
This literature discussion is based on a paper by Bill Jones and Frank Feher (J. Am. Chem. Soc., 1986, 108, 4814-4819). In this paper, they study the activation of aromatic C-H bonds by a rhodium complex. Through careful experimental design, they were able to examine isotope effects on the selectivity of the reaction. Analysis of the rate data allowed them to prepare a reaction coordinate free energy diagram. This paper also introduces the effects of C-H bond breaking in early or late transition states on the vibrational energy spacing at both ground and excited states.
This literature discussion is based on a paper by Karen Goldberg (J. Am. Chem. Soc., 1995, 117, 6889-6896). In this early paper by Goldberg, she studied the reductive elimination of ethane and methyl iodide from dppePtMe3I. The paper is well written, and approachable for undergraduates. It shows a real, interesting application of thermodynamic and kinetic methods to the study of a problem in mechanistic chemistry.
This suite of activities can be used as a unit exploring the use of small molecule models and biophysical techniques to illuminate complicated biomolecules. The Parent LO: Modeling the FeB center in bacterial Nitric Oxide reductase is a short, data-filled and well-written article that is approachable with an undergraduate's level of understanding.
This Five Slides About provides an overview of the concept of magnetic susceptibility for paramagnetic metal centers. Three methods are discussed, namely the Evans NMR Method, the magnetic balance and SQUID (Superconducting QUantum Interference Device). The availability of each method varies across institutions.
This 5 slides about will introduce students to the concept of photoinduced electron transfer. These slides go over the energics of photoinduced electron transfer, which implements basic concepts of photochemistry and electrochemistry. The photoinduced electron transer properties of ris-(2,2'-bipyridine)-ruthenium(II) is used as an example.
I recently came across some web resources for teaching kinetics. They are searchable compilations of kinetics data, principally gas-phase. Two of the sites include "recommended" data for use in simulations.
I describe the four sites here and the URLs are here and below.
http://jpldataeval.jpl.nasa.gov/
This is a critical tabulation of the latest kinetic and photochemical data for use by modelers in computer simulations of atmospheric chemistry
This paper is from a Science article from Alan Goldman’s group at Rutgers University. It was one of the literature articles that was assigned during the IONiC VIPEr Workshop in July 2012. In conjunction with reading the article, workshop participants attended a seminar presented by Alan Goldman on this work.