Computational Organometallic Chemistry

Submitted by Tom Cundari / University of North Texas, Chemistry, CASCaM on Mon, 08/31/2009 - 17:57
Description
Lecture given at NSF-CENTC 2008 workshop on modeling in organometallic chemistry.

Energy Nuggets: MOF’s for CO2 Sequestration

Submitted by Maggie Geselbracht / Reed College on Thu, 06/04/2009 - 03:50
Description
This literature discussion activity is one of a series of “Energy Nuggets,” small curricular units designed to illustrate: The Role of Inorganic Chemistry in the Global Challenge for Clean Energy Production, Storage, and Use.

Glassware and Apparatus Videos

Submitted by Jason Cooke / Department of Chemistry, University of Alberta, Canada on Wed, 04/15/2009 - 18:07
Description

A series of videos has been produced to show students the best way to assemble glass jointware.  A variety of different examples are provided, with variations that demonstrate some of the more complicated assemblies that are often used in inorganic synthesis (e.g., how to protect the system with a drying tube or to purge an apparatus with an inert gas).  The intent of the videos is to provide visual learners with a better idea of what they must do in the laboratory, and thereby speed up the process of assembling glass jointware.

Videos include:

Catalytic cycles and artistry: Chalk Drawing 101

Submitted by Adam Johnson / Harvey Mudd College on Wed, 04/15/2009 - 14:19
Description

This is how I always end my organometallics unit in my advanced inorganic chemistry class.  The students have already learned electron counting, the major reaction types (oxidative addition (OA), reductive elimination (RE), 1,1- and 1,2-insertion, β­-hydrogen elimination, and [2+2] cycloadditi­ons), and have gone through naming elementary steps in class for some classic catalytic cycles (hydrogenation with Wilkinson's catalyst and the Monsanto acetic acid process).

Bonding and Electronic Structure of a 14-electron W(II) bound to 4-electron pi-donors

Submitted by Hilary Eppley / DePauw University on Sun, 01/11/2009 - 12:01
Description

This paper is a meaty communication that covers novel bonding of 4 e- π-donors to a 14-electron species. Requires students to apply their knowledge of electron counting and organometallic bonding to ligands that are acting in novel ways.  This also includes exercises dealing with chemical information and general questions that require students to put the science in context. 

F-elements Lecture Material

Submitted by Bunzli Jean-Claude / Ecole Polytechnique Federale de Lausanne (EPFL) on Sat, 08/02/2008 - 18:06
Description
The goal of this course taught at the MSc level is to provide students with an overview of the properties of the f-elements, with reference to their multiple uses in our daily life and in high technology applications. The course is mainly focused on 4f elements with some reference to 5f elements as well.

Computational Study of tetrachlorbis(dimethylsulfoxide) tin(IV) Linkage Isomers

Submitted by N. Fackler / Nebraska Wesleyan University on Wed, 07/16/2008 - 17:23
Description

This experiment is a computational supplement to Part B of the tin chemistry described in "Synthesis and Technique in Inorganic Chemistry" (Exp 7; see below for the complete citation).*  Students will optimize and compute IR spectra for the cis and trans and corresponding linkage isomers of tetrachlorbis(dimethylsulfoxide) tin(IV).  A comparison of experimental (IR spectra) and computational data (enthalpies of formation; IR spectra) will aid them in determining the most likely product of this simple synthesis and in identifying the S-O vibrations in their experimental spectrum.

Computational Modeling of a Molybdenum Piano Stool Complex

Submitted by N. Fackler / Nebraska Wesleyan University on Wed, 07/16/2008 - 15:28
Description

This is a computational/molecular modeling supplement to the synthesis of  [1,3,5-C6H3(CH3)3]MoCO3 included in the third edition of  "Synthesis and Technique in Inorganic Chemistry" (see full citation below)*. Students optimize the model and compute an infrared spectrum and compare it to their experimental (solution) spectrum.

*G. S. Giorlami, T. B. Rauchfuss, R. J. Angelici  “Synthesis and Technique in Inorganic Chemistry: A Laboratory Manual”, Third Edition

Identifying residual solvents

Submitted by Joe Fritsch / Pepperdine University on Thu, 06/26/2008 - 14:50
Description
Identifying residual solvents is important in helping students to interpret their NMR spectra and in the preparation of elemental analysis samples.  I have found the NMR work of Gottlieb and Nudelman to be valuable in my research and the teaching lab. The tabular data for many residual solvents in common NMR solvents for both proton and carbon spectra has been extremely valuable. Interpreting an NMR spectrum containing a residual solvent becomes  easier when the chemical shifts and multiplicity for the solvent are known.

Nitrogenase primary literature

Submitted by Adam Johnson / Harvey Mudd College on Fri, 04/04/2008 - 17:58
Description
Some in-class materials for discussion of the nitrogenase enzyme, including some background reading on the bacterial process, the industrial process, X-ray structure data of the P-cluster and the Mo-Fe cluster, and Schrock's reaction cycle that models the biological process.  Also included are the literature sources I use in my in-class discussion of nitrogenase;  2 X-ray crystal structures by Rees, and the synthetic work by Schrock.