Bio-Organic Reaction Animations (BioORA)
This "Five slides about" is meant to introduce faculty and/or students to Spectroelectrochemistry (SEC), a technique that is used in inorganic chemistry research and other areas. SEC is a powerful tool to examine species that are normally hard to synthesize and isolate due to instability and high reactivity. Papers with examples of SEC techniques are provided on the last slide.
This learning object is designed to spark discussion and educate students taking an inorganic chemistry course about laboratory safety. It uses the article "Learning from UCLA" by Jyllian N. Kemsley (Chemical & Engineering News (2009), Vol. 87 Issue 31, pp.
I asked the students in my junior/senior inorganic course to develop their own literature discussion learning objects and lead the rest of the class in a discussion of their article. Student Johann Maradiaga chose this article describing the synthesis and characterization of Fe2GeS4 nanocrystals with potential applications in photovoltaic devices (Sarah J. Fredrick and Amy L. Prieto, “Solution Synthesis and Reactivity of Colloidal Fe2GeS4: A Potential Candidate for Earth Abundant, Nanostructured Photovoltaics” J. Am. Chem.
This lab exercise uses air-stable compounds (polyhalomethanes) to demonstrate trap-to-trap distillation, a technique used to separate air-sensitive compounds. The apparatus (including part numbers from CHEMGLASS) is described. In addition, slush baths are employed, which are a novelty for our Inorganic Laboratory course and a source of amazement for the students. The separation of the compounds (the percentage each compound in each trap) is determined by 1H NMR.
This suite of activities can be used as a unit exploring the use of small molecule models and biophysical techniques to illuminate complicated biomolecules. The Parent LO: Modeling the FeB center in bacterial Nitric Oxide reductase is a short, data-filled and well-written article that is approachable with an undergraduate's level of understanding.
This Five Slides About provides an overview of the concept of magnetic susceptibility for paramagnetic metal centers. Three methods are discussed, namely the Evans NMR Method, the magnetic balance and SQUID (Superconducting QUantum Interference Device). The availability of each method varies across institutions.
This is a problem set based on the article "Energetic Cuprous Azide Complex: Synthesis, Crystal Structure and Effection on the Thermal Decomposition of HMX" in the Journal of Chemical Crystallography. It has been used in a Chemistry Capstone course for both Chemistry and Biochemistry majors during the first semester senior year. Biochemistry majors are not required to take Inorganic Chemistry and Chemistry majors may be currently taking Inorganic chemistry.
In this literature discussion, students read a paper about a cobalt metallopeptide that imitates the active site of the enzyme nitrile hydratase. Specifically, the model complex is oxidized by air to produce a coordination sphere with both cysteine thiolate and sulfinic acid ligands, much like the post-translationally oxidized cysteine ligands in the biological system.
This is a literature discussion based on the paper “Spectroscopic Elucidation of the Inhibitory Mechanism of Cys2