Catalytic Transformation of Lignin (Abu Omar)

Submitted by Hilary Eppley / DePauw University on Tue, 03/15/2022 - 10:20
Description

Lignin material from plants may be transformed into useful organic materials.  This LO is part of a special VIPEr collection honoring the 2022 ACS National Award recipients in the field of inorganic chemistry. Mahdi Abu Omar was the recipient of the ACS Award in Green Chemistry for his contributions to fundamental science and technology development for catalytic lignin conversion to renewable chemicals, fuels, and materials following green chemistry and engineering principles. 

The ditungsten tetracarboxylate story (Sattelberger)

Submitted by Joanne Stewart / Hope College on Tue, 03/15/2022 - 09:37
Description

This literature discussion learning object examines the first reported synthesis in 1983 of the long anticipated quadruply bonded ditungsten tetracarboxylate dimers by Dr. Al Sattelberger and co-workers. This LO is part of a special VIPEr collection honoring the 2022 ACS National Award recipients in the field of inorganic chemistry. Alfred P. Sattelberger was the recipient of the 2022 ACS Award for Distinguished Service in the Advancement of Inorganic Chemistry.

Enhancement of the Thermal Stability and Thermoelectric Properties of Yb14MnSb11 by Ce Substitution (Kauzlarich)

Submitted by Susan Kauzlarich / University of California, Davis on Mon, 03/14/2022 - 20:57
Description

This article provides an introduction to thermoelectric materials and applications for space, highlighting a complex Zintl phase, Yb14-xCexMnySb11. Yb14MnSb11 is a semiconductor that can be substituted with Ce to change the number of carriers in the material and thereby enhance the transport properties.

Spectroscopic, Structural, and Computational Analysis of [Re(CO)3(dippM)Br]n+ (Nataro)

Submitted by Shirley Lin / United States Naval Academy on Sat, 03/12/2022 - 06:17
Description

This literature discussion will guide students through an article that applies spectroscopic, structural, and computational analyses to a family of compounds of the type [Re(CO)3(dippM)Br]n+  (dippM = 1,1’-bis(diisopropyl)phosphino metallocene, M = Fe, n= 0 or 1; M = Co, n = 1).

Toward the Design of Phosphorescent Emitters of Cyclometalated Earth-Abundant Nickel(II) and Their Supramolecular Study (Yam)

Submitted by Kyle Grice / DePaul University on Tue, 03/08/2022 - 15:15
Description

This LO was created to celebrate Dr. Vivian W.-W. Yam's 2022 ACS Award, the Josef Michl Award in Photochemistry. These questions are written to help guide class discussion about this paper and the complexes in it. This LO would be good for an organometallics class or similar upper-division inorganic chemistry class. 

Evidence of a homogeneous trinuclear Rh(I)-Cu(II)-Rh(I) catalyst for benzene C-H oxidative addition and styrene production (Gunnoe)

Submitted by John Lee / University of Tennessee Chattanooga on Wed, 03/02/2022 - 10:26
Description

The literature discussion is based on a manuscript by Gunnoe and coworkers (ACS Catal. 2021, 11, 5688-5702. DOI: 10.1021/acscatal.1c01203). The paper presents mechanistic studies of catalytic oxidative conversion of arenes and olefins to alkenyl arenes with a focus on styrene production.

Reversible, Metal-Free Hydrogen Activation (Stephan)

Submitted by Todsapon T. / University of Evansville on Tue, 03/01/2022 - 16:35
Description

This LO discuss various aspects of a reversible hydrogen activation by a metal-free phosphonium-borate compound.  Attentions are paid to the specific and usual reaction between highly steric phosphine and borane reactants to form a zwitterionic phosphonium borate product.  NMR spectroscopy, kinetics and thermodynamics of the hydrogen activation with the phosphonium borate product are also discussed.  The original work was published in Science by Douglas W. Stephan and co-workers.

Review of Atomic Orbitals and Guided Tour of the Orbitron

Submitted by Patrick Lutz / St. Lawrence University on Mon, 02/21/2022 - 11:08
Description

This activity was created to extend the "First Day Review of Atomic Orbitals" LO to take up a full class period. The first part of the activity is likely familiar to many VIPER users, asking students to brainstorm and review key concepts related to atomic orbitals. (The author participated in this very activity as a student circa 2010!) The second part of this LO is new and leads students on a guided tour of the Orbitron website to review or discover the shapes of atomic orbitals and their nodal properties.

Free Energy of Activation & Reaction Completion Times

Submitted by Joanna Webb / West Virginia Wesleyan College on Thu, 02/17/2022 - 13:39
Description

This spreadsheet uses the Eyring equation to draw a connection between activation barriers and the timescale of a reaction. Students input a free energy of activation and can quickly see how long a reaction will take at varying temperatures. This has been particularly useful in computational sections of literature articles that investigate possible mechanistic pathways.