Band Structures, Electronic and Optical Properties of Metals, Semiconductors, and Insulators

Submitted by Maggie Geselbracht / Reed College on Tue, 06/25/2013 - 00:32

I created this Collection of Learning Objects (LOs) at the IONiC VIPEr TUES 2013 Workshop: Solid State Materials for Alternative Energy Needs held at Penn State University.  The overall theme of the Collection is electronic and optical properties of metals, semiconductors, and insulators.  Most of the learning objects either require knowledge of or explicitly refer to band structures, either at a basic level or a more advanced level.  Some LOs also deal with extended structures, un

Symmetry, Group Theory, and Computational Chemistry

Submitted by Joanne Stewart / Hope College on Mon, 06/24/2013 - 22:46

These Learning Objects were used in an advanced undergraduate chemistry course that used computational chemistry as an integrative tool to help students deepen their understanding of structure, bonding, and reactivity and practice their integrative expertise by addressing complex problems in the literature and in their own research.

Synthesis and Analysis of the POM Ammonium Decavanadate, (NH4) 6V10O28*6H2O

Submitted by Sabrina Sobel / Hofstra University on Mon, 06/24/2013 - 20:35
Description

Synthesis of ammonium decavanadate, and analysis via IR, UV-Vis and quantitative titration. Time: 1.5 lab periods

 

Purpose

            The purpose of this lab experiment is to expose students to the synthesis of a colored POM, and to connect the use of standard analytical techniques to this new type of compound. It introduces the use of IR spectroscopy of inorganic materials.

 

Introduction

Virtual Schlenk Line

Submitted by Amanda Reig / Ursinus College on Mon, 06/24/2013 - 10:10
Description

This website provides a link to a simple downloadable program that introduces students to a Schlenk line through a series of short animations.  It is designed for Windows (does not appear to work on Windows 8 or on Macs).  While a bit rudimentary, it does a nice job of showing students the basic setup, discussing safety concerns with the liquid nitrogen trap, and outlining the general procedure for starting up and shutting down the Schlenk line.

Lithium Diazenide Surprise!

Submitted by Maggie Geselbracht / Reed College on Fri, 05/31/2013 - 23:00
Description

Students in a sophomore-level inorganic chemistry course were asked to read the paper “High-Pressure Synthesis and Characterization of the Alkali Diazenide Li2N2” (Angew. Chem. Int. Ed. 2012, 51, 1873-1875. DOI: 10.1002/anie.201108252) in preparation for a class discussion.  For many students, this was a first exposure to reading the primary literature. 

[RuH(NO3)(CO)2(PPh3)2]: An analysis of the literature

Submitted by Chip Nataro / Lafayette College on Thu, 05/16/2013 - 18:47
Description

The original description of the synthesis of [RuH(NO3)(CO)2(PPh3)2 appears in Inorg. Chem. (Critchlow, P. B.; Robinson, S. D. Inorg. Chem. 1978, 17, 1896). There are eight possible structures for this octahedral isomer (including two sets of enantiomers). Students are shown one of the structures and asked to draw the remaining seven. The authors analyze the spectroscopic data obtained for the compound in order to determine which isomer formed. Unfortunately, there was an error in the analysis.

A Visual Isotope Effect (a YouTube video)

Submitted by Dan O'Leary / Pomona College on Wed, 04/24/2013 - 17:46
Description

We have prepared a YouTube video demonstrating a visually accessible kinetic isotope effect in the Cr(VI) oxidation process, a reaction commonly encountered in introductory organic chemistry. The demo provides students with an opportunity to see an isotope effect and then understand how it can be used to provide mechanistic evidence for the identification of a rate-determining reaction step.

So Much Nitrogen: Maggie's Explosive Main Group Compounds

Submitted by W. Stephen McNeil / University of British Columbia Okanagan on Thu, 03/21/2013 - 00:47

Maggie Geselbracht has a great fondness for compounds with too many nitrogen atoms next to each other.  This is a collection of problem sets and class activites based on the structure, bonding, and spectroscopy of a number of such compounds, drawn from the recent literature.

Computational Chemistry

Submitted by Lori Watson / Earlham College on Mon, 02/25/2013 - 16:07

My first computational collection

Semi-Quantitative Molecular Orbital Diagrams

Submitted by Gerard Rowe / University of South Carolina Aiken on Thu, 02/14/2013 - 10:25
Description

In this activity, students construct molecular orbital correlation diagrams for several species (H2, He2, HeH), in a semi-quantitative fashion using a ruler and a list of first ionization energies.  All the MO schema are placed on a common energy scale, and the stability of each orbital is reported using "cm from the top of the paper" as the unit of energy.