Interpreting Reaction Profile Energy Diagrams: Experiment vs. Computation

Submitted by Douglas A. Vander Griend / Calvin College on Sat, 06/23/2018 - 10:56
Description

The associated paper by Lehnert et al. uses DFT to investigate the reaction mechanism whereby a flavodiiron nitric oxide reductase mimic reduces two NO molecules to N2O. While being a rather long and technical paper, it does include several figures that highlight the reaction profile of the 4-step reaction. This LO is designed to help students learn how to recognize and interpret such diagrams, based on free energy in this case. Furthermore, using a simple form of the Arrhenius equation (eq.

Bonding and MO Theory in Flavodiiron Nitrosyl Model Complexes - Foundation Level

Submitted by James F. Dunne / Central College on Fri, 06/22/2018 - 22:31
Description

This acitivty is a foundation level discussion of the Nicolai Lehnert paper, "Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases".  Its focus lies in discussing MO theory as it relates to Lewis structures, as well as an analysis of the strucutre of a literature paper.

The Preparation and Characterization of Nanoparticles

Submitted by Kyle Grice / DePaul University on Wed, 06/13/2018 - 23:23
Description

This is a nanochemistry lab I developed for my Junior and Senior level Inorganic Chemistry course. I am NOT a nano/matertials person, but I know how important nanochemistry is and I wanted to make something where students could get an interesting introduction to the area. The first time I ran this lab was also the first time I made gold nanoparticles ever! 

We do not have any surface/nano instrumentation here (AFM, SEM/TEM, DLS, etc... we can access them at other universities off-campus but that takes time and scheduling), so that was a key limitation in making this lab. 

MetalPDB website

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 05/16/2018 - 12:58
Description

When teaching my advanced bioinorganic chemistry course, I extensively incorporate structures from Protein Data Bank in both my assignments and classroom discussions and mini-lectures. I also have students access structures both in and out of class as they complete assignments.

3D Sym Op

Submitted by Caroline Saouma / Virginia Tech on Thu, 05/10/2018 - 20:31
Description

This is a great app that helps students see the symmetry in molecules. It allows you to choose a molecule (by name, structure, or point group) and display a 3D rendition of it. You can then have it display the symmetry elements, and/or apply all the symmetry operations. 

It is available for both android and apple phones: (probably easier to just search for it)

apple: https://itunes.apple.com/us/app/3d-sym-op/id1067556681?mt=8

Developing Effective Lab Report Abstracts based on Literature Examples

Submitted by Nicole Crowder / University of Mary Washington on Tue, 05/08/2018 - 11:38
Description

For inorganic lab, I have my students write their lab reports in the style of the journal Inorganic Chemistry. The first week of lab, we spend time in small groups looking at several examples of recent articles from Inorganic Chemistry, focusing mainly on the experimental section and the abstract (as these are included in every lab report). We then come back together as a class to have a discussion of each of the sections in the articles. We discuss what was included in each section, what wasn’t included, and the style, tone, tense, and voice of each section.

Foundations of Inorganic Chemistry

Submitted by Sabrina Sobel / Hofstra University on Mon, 01/22/2018 - 14:58
Description

Fundamental principles of inorganic chemistry, including: states of matter; modern atomic and bonding theory; mass and energy relationships in chemical reactions; equilibria; acids and bases; descriptive inorganic chemistry; solid state structure; and electrochemistry. Periodic properties of the elements and their compounds are discussed (3 hours lecture, 1 hour recitation). 

Inorganic Chemistry

Submitted by Nicole Crowder / University of Mary Washington on Mon, 01/22/2018 - 10:45
Description

Modern theories of atomic structure and chemical bonding and their applocations to molecular and metallic structures and coordination chemistry.