VIPEr Fellows 2022 Workshop Favorites
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
This LO focuses on creating complexes with multiple bonds between late transition metals and nitrogen. The questions will guide students through Mindiola and Hillhouse's communication that details the synthesis and investigation of three-coordinate terminal amido and imido complexes of nickel. This communication is significant because it describes the synthesis and structural characterization of what became known as his "double nickel" complex, which contains a Ni-N double bond.
This literature discussion focuses on a J. Am. Chem. Soc. communication that describes a series of Pt complexes that exhibit competitive reductive elimination reactions to form either an sp2-sp3 bond or an sp3-sp3 bond. One of the complexes also contains a C-C agostic interaction with the metal. The questions are written to be addressed by students in a foundation-level inorganic course.
The wave nature of electrons is applied to atomic structure and periodic trends. Inter and intramolecular bonding models are used to interpret the chemical and physical properties of various materials, from simplistic diatomic molecules to structurally complex molecular and ionic systems.
This Guided Literature Discussion was assigned as a course project and is the result of work originated by students Elina Andreassen and Abigail Palmer.
This literature discussion will guide students through an article that applies spectroscopic, structural, and computational analyses to a family of compounds of the type [Re(CO)3(dippM)Br]n+ (dippM = 1,1’-bis(diisopropyl)phosphino metallocene, M = Fe, n= 0 or 1; M = Co, n = 1).
The literature discussion is based on a manuscript by Gunnoe and coworkers (ACS Catal. 2021, 11, 5688-5702. DOI: 10.1021/acscatal.1c01203). The paper presents mechanistic studies of catalytic oxidative conversion of arenes and olefins to alkenyl arenes with a focus on styrene production.
This collection accompanies the IONiC VIPEr nanoCHAt video series NeWBiEs, recorded in Spring 2022. This series is comprised of weekly conversations with two IONiC members, Wes Farrell and Shirley Lin from the US Naval Academy, as they taught a foundation-level inorganic chemistry course for the first time. The LOs discussed in the videos are included in this collection.
Syllabus: https://www.luther.edu/mertzecl/courses/chem372/
Chemistry 372 is a course including molecular and solid-state bonding and structure, molecular symmetry, and coordination and organometallic chemistry.
This course focuses on the concepts of inorganic chemistry with emphasis on atomic structure, periodicity, group and bonding theories, symmetry, solid-state structures of metals, ionic compounds and semiconductors, as well as transition metal coordination chemistry.