George Stanley Organometallics

Submitted by Adam Johnson / Harvey Mudd College on Fri, 06/10/2016 - 14:53

This is an LO for the collection of organometallics LOs by George Stanley. Adam Johnson is curating the material that was written by George.

For many years, George hosted his organometallics lecture notes, powerpoint slides, and handouts, on his personal website at LSU. He always wanted that material available to the public. Recently, they moved to a CMS and that material is no longer available. Adam is working with George to get the 2016-2017 version of his materials up on VIPEr for everyone to use.

The lecture notes are freely available to all.

Ligand effects in titration calorimetry from the Angelici lab

Submitted by Chip Nataro / Lafayette College on Mon, 05/23/2016 - 21:08
Description

This literature discussion focuses on a paper from the Angelici lab that examines the heat of protonation of [CpʹIr(PR3)(CO)] compounds. The compounds presented in the paper provide good introductory examples for electron counting in organometallic compounds. The single carbonyl ligand in these compounds provide an excellent probe to monitor the electron richness at the metal center which is impacted by the electron donor ability of the ligands.

Nanomaterials Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 03/23/2016 - 15:49

This list includes a number of LOs to help in teaching nanomaterials subjects; however, it is not exhaustive.

Updated June 2018.

Working with Catalytic Cycles

Submitted by Matt Whited / Carleton College on Mon, 09/28/2015 - 14:05
Description

Students work in groups to identify relevant steps and intermediates in 3 catalytic cycles, all the while considering bonding (and electron counting) factors.  Following assignment of these steps and intermediate species, the students consider several questions related to catalysis more broadly, particularly the role of each reagent, how to speed up or slow down specific steps, and the importance of regiospecificity in certain steps.

Iron Cross-Coupling Catalysis

Submitted by Laurel Goj Habgood / Rollins College on Wed, 09/16/2015 - 13:08
Description

In this experiment, students will synthesize and characterize an iron complex followed by completion of two series of catalytic cross-coupling reactions mimicking the methodology utilized by organometallic chemists to balance catalyst efficacy and substrate scope.  Initially the complex Fe(acac)3 [acac =  acetylacetone] is prepared.  Two sets of catalytic reactions are completed: one comparing different iron catalysts (Fe(acac)3, FeCl2, FeCl3) while the other compares substrates (4-chlorotoluene, 4-chlorobenzonitrile, 4-chlorotrifluorotoluene).

Antibacterial Reactivity of Ag(I) Cyanoximate Complexes

Submitted by Kari Young / Centre College on Sat, 08/22/2015 - 14:09
Description

In this experiment, students will synthesize and characterize one of three Ag(I) cyanoximate complexes as potential antimicrobial agents for use in dental implants. This experiment combines simple ligand synthesis, metalation and characterization, and a biomedical application. The complexes are both air and light stable.

A discussion on "Electrochemical formation of a surface-adsorbed hydrogen-evolving species"

Submitted by Kevin Hoke / Berry College on Thu, 07/02/2015 - 14:22
Description
The paper entitled “Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species” explores the discovery, characterization and catalytic activity of a film that deposited on the electrode while studying a nickel complex under electrocatalytic conditions.
 
This literature discussion includes several sets of questions that address different aspects of the paper, as described in the implementation notes.

Synthesis of Aspirin- A Lewis Acid Approach

Submitted by Kathleen Field / WGU on Mon, 06/29/2015 - 21:29
Description

This is the procedure for a Fe(III) catalyzed synthesis of aspirin, an alternative to the traditionally sulfuric acid catalyzed synthesis of aspirin.  The prep compares and contrasts the Bronsted acid catalyzed esterification reaction with a Lewis acid iron (III) catalyzed pathway.  This can be used in different courses at different levels, but is it written for a general/intro level chemistry course.