Molecular Hydrogen Complexes of Mo and W

Submitted by Kyle Grice / DePaul University on Fri, 11/11/2016 - 19:28
Description

Literature discussion about the first examples of molecular hydrogen complexes isolated by Gregory J. Kubas in the early 80s. The questions are divided into groups with two levels of difficulty.

The more basic group of questions includes topics on:

1)      Coordination Chemistry: electron count, geometry, oxidation state, orbital interactions, types of ligands, binding modes, cis/trans and fac/mer isomers.

2)      Symmetry elements and point groups.

3)      Basic concepts on spectroscopy: NMR, Raman, IR, UV/Vis, XANES, EXAFS, neutron and X-ray diffraction

Zones of Catalysis: Only the Metal? A literature Discussion of Outer-Sphere Hydroboration

Submitted by Santiago Toledo / St. Edward's University on Thu, 06/30/2016 - 14:51
Description

This literature activity is designed to introduce students to the concept of outer-sphere hydroboration catalytic reactions. It can be used after hydrogenation and hydroboration reactions have been introduced in class (typically covered in organic chemistry). Additionally, this activity allows students to apply their understanding of redox chemistry, acid base chemistry, and physical techniques to characterize products and elucidate reactions mechanisms.

Structure matching: the $64,000 question

Submitted by Kari Stone / Lewis University on Thu, 06/30/2016 - 14:31
Description

In-class exercise that helps students learn how to use structural data and other experimental methods to assign structure. Using chemical intuition, students will rationalize the structures of metal complexes that differ by protonation states.

Uses for Character Tables: IR and Raman Spectroscopy

Submitted by Kristy L. Mardis / Chicago State University on Mon, 06/27/2016 - 10:11
Description

A guided inquiry activity where students use group theory and character tables to practice determining reducible representations for all atoms and the individual bonds (like CO stretches).  The students then reduce the representation, determine which are vibrational modes, and then determine which are IR active using the character table.  For the second portion, they practice using this approach to differentiate between two metal isomers.

Ligand Field Correlations for Square Pyramidal Oxovanadium(III)

Submitted by Matt Whited / Carleton College on Fri, 04/22/2016 - 10:37
Description

Students work in groups to derive the ligand-field diagram for a square-pyramidal vanadium(III) oxo complex using octahedral V(III) as a starting point. The activity helps students to correlate changes in orbital energies as a function of changing ligands and geometry as well as rationalizing why certain geometries can be particularly good (or bad) for particular complexes. The activity also helps students see why oxo complexes of early metals are frequently best described as triple bonds.

d orbital splitting in Trigonal Pyramidal Field

Submitted by Sheila Smith / University of Michigan- Dearborn on Sat, 02/27/2016 - 12:55
Description

This is a short critical thinking exercise that I use to assess whether my students have understood where the d orbital splitting in Octahedral and Tetrahedral geometry  comes from.  I do it at the beginning of the class after we discuss CFT/LFT in Oh and Td compounds. 

Build-Your-Own Molecular Orbitals

Submitted by Anne Bentley / Lewis & Clark College on Fri, 02/19/2016 - 12:44
Description

This is a truly hands-on activity in which students manipulate paper cutouts of carbon atomic orbitals and oxygen group orbitals to identify combinations with identical symmetry and build the carbon dioxide molecular orbital diagram. The activity pairs well with the treatment of MO theory in Miessler, Fischer, and Tarr, Chapter 5. An optional computational modeling component can be added at the end.

Otterbein Symmetry In-Class Activity/Take home activity

Submitted by Kyle Grice / DePaul University on Mon, 01/25/2016 - 21:26
Description

This is an in-class activity I made for my students in a Junior/Senior-level one-quarter inorganic course. 

Unfortunately it was waaay too long for the 1.5 h class (i gave them about 45 min). I recommend taking this and adapting it to a take-home exercise or homework set, which is probably what I will do this coming year. 

Students used Otterbein to look at various structures, starting with low symmetry, working up to very high symmetry structures. I had them go through the "challenge" so they couldn't see the keys at first, but then go back to check their answers. 

Ir(III) Catalyst Regeneration Using Molecular Oxygen: Addressing Key Challenges that Hinder Alkane Dehydrogenation Catalysis. A Literature Discussion

Submitted by Vanessa / Albion College on Thu, 07/02/2015 - 15:56
Description

This Learning Object involves reading a recent scientific journal article, answering questions relating to the content, and participating in a classroom discussion. The paper under review is “Regeneration of an Iridium (III) Complex Active for Alkane Dehydrogenation Using Molecular Oxygen,” Organometallics, 33, 1337-1340. DOI: /10.1021/om401241e).

How to Determine the Irreducible Representation of a MO

Submitted by Richard Lord / Grand Valley State University on Wed, 07/01/2015 - 13:42
Description

Five slides about how to systematically determine the irreducible representation if provided an unlabeled SALC. These slides focus on molecular orbitals, but this tool can be extended to any kind of SALC.