Zinc-Zinc Bonds (Expanded and Updated)

Submitted by Wes Farrell / United States Naval Academy on Wed, 06/05/2019 - 11:42
Description

This paper in Science reports the synthesis of decamethyldizincocene, a stable compound of Zn(I) with a zinc-zinc bond. In the original LO, the title compound and the starting material, bis(pentamethylcyclopentadienyl)zinc, offer a nice link to metallocene chemistry, electron counting, and different modes of binding of cyclopentadienyl rings as well as more advanced discussions of MO diagrams.

Advanced Inorganic Chemistry

Submitted by Jeremy R. Andreatta / Worcester State University on Tue, 06/04/2019 - 23:07
Description

This course is a survey of the chemistry of the inorganic elements focusing on the relationship between electronic structure, physical properties, and reactivity across the periodic table. Topics to be covered include: atomic structure, chemical bonding, group theory, spectroscopy, crystal field theory, coordination chemistry, organometallic chemistry and catalysis, and bioinorganic chemistry.  Prerequisites: Successful completion of CH120, CH121, (with a C- or better) and CH 301 (suggested)

Inorganic Chemistry

Submitted by Leon / Stonehill College on Mon, 06/03/2019 - 11:32
Description

This course covers fundamentals of central topics in inorganic chemistry from historical to modern-day perspectives.  Topics include: coordination compounds (history, structure, bonding theories, reactivity, applications); solid state chemistry (crystals, lattices, radius ratio rule, defect structures, silicates & other minerals); and descriptive chemistry of the elements.

Advanced Inorganic Chemistry

Submitted by John Miecznikowski / Fairfield University on Sun, 06/02/2019 - 16:48
Description

This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry.  After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced.   A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory.  The students will use symmetry and group theory approaches to understand central atom hybridization, ligand

Inorganic Chemistry

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 05/22/2019 - 10:42
Description

This course introduces the chemistry of transition metals and main group elements. Topics include theories of bonding, kinetics and mechanisms of reactions of transition metal complexes, oxidation-reduction reactions, hard-soft acid-base theory, and solid-state chemistry. Applications of inorganic chemistry to other areas (organic, analytical, and physical chemistry, as well as biology and biochemistry) are highlighted throughout the course. The laboratory portion of the course involves the synthesis and spectroscopic investigation of inorganic complexes.

Guided Literature Discussion of “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid”

Submitted by M. Watzky / University of Northern Colorado on Mon, 01/28/2019 - 14:50
Description

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Joie Games and Benjamin Melzer.  It is based on the article “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid” by Matthew Finn, J. August Ridenour, Jacob Heltzel, Christopher Cahill, and Adelina Voutchkova-Kostal in Organometallics 2018 37 (9), 1400-1409.

Inorganic Chemistry

Submitted by Kari Young / Centre College on Mon, 01/28/2019 - 11:23
Description

A study of the chemistry of inorganic compounds, including the principles of covalent and ionic bonding, symmetry, periodic properties, metallic bonding, acid-base theories, coordination chemistry, inorganic reaction mechanisms, and selected topics in descriptive inorganic chemistry. Laboratory work is required.

Guided Literature Discussion of “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines”

Submitted by M. Watzky / University of Northern Colorado on Wed, 01/16/2019 - 19:11
Description

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Jana Forster and Kristofer Reiser.  It is based on the article “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines” by Christopher F. Bender, Timothy J. Brown, and Ross A. Widenhoefer in Organometallics 2016 35 (2), 113-125.