Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

Trap-to-Trap Distillation of Volatile Organic Liquids (Polyhalomethanes)

Submitted by Craig M. Davis / Xavier University on Thu, 09/04/2014 - 12:45
Description

This lab exercise uses air-stable compounds (polyhalomethanes) to demonstrate trap-to-trap distillation, a technique used to separate air-sensitive compounds. The apparatus (including part numbers from CHEMGLASS) is described. In addition, slush baths are employed, which are a novelty for our Inorganic Laboratory course and a source of amazement for the students. The separation of the compounds (the percentage each compound in each trap) is determined by 1H NMR.

Ligand Lineup

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Fri, 08/22/2014 - 11:40
Description

This is a kinesthetic activity in which students must utilize knowledge of the σ-donating, π-donating and π-accepting ability of ligands in order to rank the ligands in the spectrochemical series.  Students are each assigned a ligand on a card.  Suggested ligands are I-, Br-, Cl-, F-, ONO-, NO2- OH-, H2O, pyridine, NH3, ethylenediamine, bipyridine, phenanthroline, PPh3, CN- and CO.  Each student must evaluate the π-accepting, π-donating and σ-donating ability o

Luminescence

Submitted by Vivian / Clemson University, Department of Chemistry on Thu, 08/14/2014 - 22:53
Description

This is a 5-slides on luminescence. It contains introductory and basic description of different examples of luminscence. Since, this is a community of inorganic chemists, only inorganic compounds are discussed as examples.

A Living Syllabus for Sophomore Level Inorganic Chemistry

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 16:02
Description

In my sophomore level inorganic course, I have experimented with the idea of a living syllabus as a way to develop my own specific learning objectives and to help the students connect the material to the tasks that will be expected of them in assessing their learning. 

Suite of LOs on Biomimetic Modeling

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 09:52

This suite of activities can be used as a unit exploring the use of small molecule models and biophysical techniques to illuminate complicated biomolecules.  The Parent LO:  Modeling the FeB center in bacterial Nitric Oxide reductase is a short, data-filled and well-written article that is approachable with an undergraduate's level of understanding.

Isn't It Ionic (with apologies to Alanis Morissette)

Submitted by Craig M. Davis / Xavier University on Sun, 08/03/2014 - 16:58
Description

This spoof of the song "Isn't It Ironic" (by Alanis Morissette) summarizes the properties of ionic compounds in verse. Suitable for General Chemistry classes as well as Inorganic Chemistry, although a reference is made to the Born-Meyer equation.

Five Slides About Magnetic Susceptibility

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Tue, 07/29/2014 - 12:38
Description

This Five Slides About provides an overview of the concept of magnetic susceptibility for paramagnetic metal centers. Three methods are discussed, namely the Evans NMR Method, the magnetic balance and SQUID (Superconducting QUantum Interference Device). The availability of each method varies across institutions.

A cuprous azide complex: The effect of structure on the stability of the azide ion

Submitted by Jim Jeitler / Marietta College on Thu, 07/17/2014 - 17:50
Description

This is a problem set based on the article "Energetic Cuprous Azide Complex: Synthesis, Crystal Structure and Effection on the Thermal Decomposition of HMX" in the Journal of Chemical Crystallography.  It has been used in a Chemistry Capstone course for both Chemistry and Biochemistry majors during the first semester senior year.  Biochemistry majors are not required to take Inorganic Chemistry and Chemistry majors may be currently taking Inorganic chemistry.