Inorganic Chemistry I with Laboratory

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 12:17
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

Inorganic Chemistry I

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 11:32
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

Advanced Inorganic Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 01/10/2018 - 18:20
Description

Modern concepts of inorganic and transition-metal chemistry
with emphasis on bonding, structure, thermodynamics, kinetics and
mechanisms, and periodic and family relationships. Atomic structure,
theories of bonding, symmetry, molecular shapes (point groups), crystal
geometries, acid-base theories, survey of familiar elements, boron
hydrides, solid-state materials, nomenclature, crystal field theory,
molecular orbital theory, isomerism, geometries, magnetic and optical
phenomena, spectra, synthetic methods, organometallic compounds,

Inorganic Chemistry

Submitted by Lori Watson / Earlham College on Thu, 01/04/2018 - 11:27
Description

Inorganic chemists study the entire periodic table (even carbon—as long as it’s bound to a metal!) and are interested in the structure and reactivity of a wide variety of complexes.  We will spend the first third of the course learning some “tools” and then will apply them to a variety of current topics in inorganic chemistry (bioinorganic chemistry, solid state materials, catalysis, nuclear chemistry, and more!).

Literature Discussion of "A stable compound of helium and sodium at high pressure"

Submitted by Nicole Crowder / University of Mary Washington on Sat, 06/03/2017 - 11:26
Description

This paper describes the synthesis of a stable compound of sodium and helium at very high pressures. The paper uses computational methods to predict likely compounds with helium, then describe a synthetic protocol to make the thermodynamically favored Na2He compound. The compound has a fluorite structure and is an electride with the delocalization of 2e- into the structure.

This paper would be appropriate after discussion of solid state structures and band theory.

The questions are divided into categories and have a wide range of levels.

calistry calculators

Submitted by Adam Johnson / Harvey Mudd College on Wed, 01/18/2017 - 18:17
Description

I just stumbled on this site while refreshing myself on the use of Slater's rules for calculating Zeff for electrons. There are a variety of calculators on there including some for visualizing lattice planes and diffraction, equilibrium, pH and pKa, equation balancing, Born-Landé, radioactive decay, wavelengths, electronegativities, Curie Law, solution preparation crystal field stabilization energy, and more.

I checked and it calculated Zeff correctly but I can't vouch for the accuracy of any of the other calculators. 

Group VI metal carbonyl compounds with pincer ligands

Submitted by Chip Nataro / Lafayette College on Wed, 01/11/2017 - 16:43
Description

This literature discussion is based on a short paper describing a series of Group VI metal carbonyl compounds that have pincer ligands (Organometallics, 2016

Inorganic Chemistry for Geochemistry and Environmental Sciences Fundamentals and Applications by George W. Luther III

Submitted by Rachel Narehood Austin / Barnard College, Columbia University on Wed, 01/04/2017 - 16:10
Description

This is a great new textbook by George Luther III from the University of Delaware.  The textbook represents the results of a course he has taught for graduate students in chemical oceanography, geochemistry and related disciplines.  It is clear that the point of the book is to provide students with the core material from inorganic chemistry that they will  need to explain inorganic processes in the environment.

The Monsanto acetic acid process

Submitted by Chip Nataro / Lafayette College on Thu, 12/29/2016 - 18:12
Description

This literature discussion is based on one of early papers detailing the mechanism for the Monsanto acetic acid process (J. Am. Chem.