How molecular orbitals change as atomic energy levels shift

Submitted by Flick Coleman / Wellesley College on Wed, 03/11/2009 - 18:11
Description

Over the years I have developed a number of interactive tools that I use in my classes. This is a tool that seems appropriate for VIPEr. Comments are always appreciated, and I am always interested in developing new tools if there is something you might find useful.

This tool allows you to look at how molecular orbitals change as the difference in electronegativities of the parent atomic orbitals increases.

 

Interactive Spreadsheets for Inorganic Chemistry

Submitted by Lori Watson / Earlham College on Sun, 03/08/2009 - 15:28
Description

This web site contains a number of interactive spreadsheets, most of which are applicable to inorganic chemistry (or a physical chemistry class that uses inorganic examples).  Here's the list of the most relevant for most inorganic classes:

 

ABC kinetics - interactively plot concentration versus reaction extent for A, B and C in A -> B -> C by varying k values

Using Computational Chemistry to discuss backbonding to CO

Submitted by Lori Watson / Earlham College on Sun, 03/08/2009 - 15:01
Description

This activity uses Gaussian with the WebMO interface to investigate the role of the metal in backbonding to CO as well as effects of the trans ligands. It can also be used as a way of introducing computational chemistry in an inorganic course.

Polarizing Power of Cations

Submitted by Nancy Williams / Scripps College, Pitzer College, Claremont McKenna College on Tue, 02/24/2009 - 20:08
Description

This is a handout which I use in an advanced general chemistry course, but which could be used in an inorganic course as well. It is a mini-periodic table with common cations and their charge to size ratios expressed as Q/r2, where Q is in integer charges (+1, +2), and r is in Angstroms. Conveniently, Na+ is an easy to remember 1.0, and Al3+ and Be2+ are easy to remember values of 10. This corresponds to the polarizing power of these ions, and is a crude proxy for how covalent their interactions with a given anion tend to be.

House: Inorganic Chemistry

Submitted by Adam Johnson / Harvey Mudd College on Mon, 01/12/2009 - 15:35
Description

House (Inorganic chemistry):  The book is divided into 5 parts:  first, an introductory section on atomic structure, symmetry, and bonding; second, ionic bonding and solids; third, acids, bases and nonaqueous solvents; fourth, descriptive chemistry; and fifth, coordination chemistry.  The first three sections are short, 2-4 chapters each, while the descriptive section (five chapters) and coordination chemistry section (seven chapters covering ligand field theory, spectroscopy, synthesis and reaction chemistry, organometallics, and bioinorganic chemistry.) are longer.  Each chapter includes

Oliver Sacks' "Uncle Tungsten" and inorganic chemistry

Submitted by Joanne Stewart / Hope College on Fri, 07/18/2008 - 21:32
Description

Students read Oliver Sacks' autobiography "Uncle Tungsten" and take turns writing chapter summaries and discussion questions. Some chapters focus on Sacks' childhood chemical explorations and others on the historical period of his youth. In the summary, students are asked to either explain the chemistry in contemporary terms OR explain the context (what was going on in the world) of the historical pieces.

Fluoro Analogue of Wilkinson's Catalyst

Submitted by Maggie Geselbracht / Reed College on Wed, 04/02/2008 - 01:24
Description
This paper describes the synthesis and characterization of the fluoro analogue of Wilkinson's catalyst [(Ph3P)3RhF]. The fluorine for chlorine switch causes an interesting change in the reactivity, promoting activation of C-Cl bonds in chloroarenes. Discussion of this paper nicely pairs with the chemistry of Wilkinson's catalyst, highlighting periodic trends in bonding and reactivity.

Miessler and Tarr: Inorganic Chemistry, 3rd. Ed

Submitted by Nancy Williams / Scripps College, Pitzer College, Claremont McKenna College on Fri, 03/28/2008 - 16:44
Description

Miessler and Tarr is an inorganic textbook which is is best suited to an upper-division one-semester inorganic course, though there is more material than can be covered in a single semester, so some choice of topics is necessary.  It is very well suited for a course oriented around structure, bonding, and reaction chemistry of transition metal compounds, but is very limited in its treatment of solids, main-group, descriptive chemistry, and bioinorganic.  Pchem would be helpful but is not necessary.  In particular, the treatment of MO theory is very in-depth.  The quality of end-of chapter p