Application of Organometallic Chemistry – Breaking the Inert C-H Bond

Submitted by John Lee / University of Tennessee Chattanooga on Mon, 07/16/2012 - 11:39
Description

This learning object is a literature discussion based on a paper published in Nature (Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507-514; doi:10.1038/446391a) discussing the mechanisms of C-H activation by transition metal complexes. This is a topic that could be covered at the end of a section on organometallic chemistry that shows a “newer” application.

The Periodic Table of Life

Submitted by Katherine Franz / Duke University, Department of Chemistry on Fri, 04/20/2012 - 08:50
Description

A little more than 5 slides, this is a video I made for a colleague to use in General Chemistry as an intro, or hook, into exciting topics in chemistry (in this case, bioinorganic).  I use these slides as an intro to my junior/senior Inorganic course on the first day of class, to ask the question "What is Inorganic Chemistry?" and get them to think about the "living" parts of "inorganic".  Topics include an overview of essential, toxic, and medicinally active elements of the periodic table, key examples of metalloprotein active sites, and an overview of the functional roles of biological in

Exposure to Computational Chemistry: Reinforcing Concepts in Inorganic Chemistry

Submitted by Christine Thomas / Ohio State University on Sat, 06/25/2011 - 14:04
Description

Groups of 2-4 students (depending on class size) are each assigned a different collaborative project that involves using DFT calculations to evaluate some of the principles of inorganic structure and bonding developed in lectures throughout the semester.  Each “project” involves comparing the computed properties (spectroscopic (IR), geometric,or relative energies) of a series of molecules and drawing conclusions about the observed differences using concepts developed in class.

Periodic trends in atomic size and electronegativity based on MO calculations

Submitted by Rob Scarrow / Haverford College on Sat, 06/25/2011 - 13:38
Description

In Haverford College's course Chem 111:Structure and Bonding, we have included a workshop exercise that guides students through their first experience using electronic structure calculations.  We use the WebMO interface along with Gaussian03, but the exercise could be adapted for other electronic structure programs. The general structure of the exercise is as follows:

The [XeF]+ Cation and Ion-Pairing in [MF6]– and [M2F11]– Salts (M = As, Sb, Bi)

Submitted by Maggie Geselbracht / Reed College on Sat, 03/19/2011 - 17:53
Description

This Lewis structure and VSEPR problem is based on a paper from Inorganic Chemistry in 2010 reporting the crystal structures of a series of salts of the [XeF]+ cation.  The [MF6] and [M2F11] anions (M = As, Sb, Bi) were used as counterions, and in all cases, the [XeF]+ cation interacts with the anion via a weak bond between the Xe and a fluoride of the anion to form an ion-pair in the crystalline solid.  These somewhat unusual ions provide an interesting application of the predictive powers of Lewis stru

A really neat periodic table

Submitted by John Gilje / James Madison University on Fri, 11/12/2010 - 09:20
Description

A really neat interactive periodic table

First Isolation of the AsP3 Molecule

Submitted by Anne Bentley / Lewis & Clark College on Fri, 09/03/2010 - 13:47
Description

Early in 2009, Christopher Cummins’ group at MIT reported (in Science) the synthesis of AsP3, a compound that had never been isolated at room temperature.  Later that year, a full article was published in JACS comparing the properties and reactivity of AsP3 to those of its molecular cousins, P4 and As4.  The longer article is full of possibilities for discussion in inorganic chemistry courses, with topics including periodic trends, NMR, vibrational spectroscopy, electrochemistry, molecular orbital theory, and coordination chemistry.

Element Jeopardy!

Submitted by Keith Walters / Northern Kentucky University on Thu, 07/15/2010 - 11:44
Description

Like many inorganic faculty (especially those faced with trying to teach "all" of inorganic chemistry in a one-term junior/senior course), I have found it increasingly difficult over the years to include any significant descriptive chemistry content in my course. Moreover, I have a constant interest in trying to convey some of the "story behind the story" in chemistry, which in this area centers on the discovery of the elements. I was mulling this over at an ACS meeting one time and happened to be in an inorganic teaching session where Josh van Houten (St.