Literature Discussion of Hexamminecobalt(III) – Probing Metal Ion Binding Sites in Nucleic Acids by NMR Spectroscopy

Submitted by EGunn / Simmons College on Tue, 12/09/2014 - 13:56
Description

I use this literature discussion in my second year inorganic class as a follow-up to a lab experiment where students synthesize Werner complexes and then (with much guidance) analyze their IR spectra using symmetry and group theory arguments. This paper provides an excellent example of how cobalt complexes are used in modern applications, and serves as a bridge to bioinorganic chemistry, which is a central feature later in the course.

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

A Living Syllabus for Sophomore Level Inorganic Chemistry

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 16:02
Description

In my sophomore level inorganic course, I have experimented with the idea of a living syllabus as a way to develop my own specific learning objectives and to help the students connect the material to the tasks that will be expected of them in assessing their learning. 

Literature Discussion of "Mechanisms Controlling the Cellular Metal Economy"

Submitted by Kyle Grice / DePaul University on Thu, 07/17/2014 - 15:07
Description

This is a literature discussion of a review by Tom O'Halloran (The link to the paper is included in the "Web Resources" below). The review covers concepts of metal content in cells, metal trasport, storage, and regulation. Its a good review to start a broader or deeper discussion about metals in biology. We have provided some questions to help guide the student discussion. These questions can be given to students prior to coming to class, and the answers can either be used for the in-class discussion and/or collected. 

Cadmium Carbonic Anhydrase (CdCA): Sustaining Life Using a Toxic Metal Ion

Submitted by Peter Craig / McDaniel College on Tue, 07/15/2014 - 01:18
Description

The Diatom Thalassiosira weissflogii is very resilient.  It thrives in poor quality water, where high CO2 levels, chlorine and cadmium ion concentrations, and pH are observed.  How is it possible for cadmium ions to be a nutrient for this diatom, when it is normally seen as a toxin in biological systems?

This LO introduces students to bioinorganic chemistry using the enzyme carbonic anhydrase to illustrate biodiversity, adaptation, HASB theory, metal ion ligand bonding as represented by the PDB using Ligand Explorer, and more.

The Structure and Color of Alums

Submitted by EGunn / Simmons College on Mon, 07/14/2014 - 13:09
Description

This is an in-class assignment designed to help students integrate their understanding of periodic trends and materials properties. Using the color of alum crystals as an example of octahedral coordination chemistry, students use their knowledge of electronic structure and periodic trends to predict which of the isomorphous alum crystals will be colored, and to qualtitatively rank the degree of crystal field splitting in a family of alum crystals.

Dissecting Catalysts for Artificial Photosynthesis

Submitted by Anne Bentley / Lewis & Clark College on Mon, 07/07/2014 - 13:57
Description

Anne asked the students in her junior/senior inorganic course to develop their own literature discussion learning objects and lead the rest of the class in a discussion of their article.  Each student chose one article from a list of suggestions provided.  Student Hayley Johnston chose this article describing a Mn-containing catalyst for carbon dioxide reduction (Jonathan M. Smieja, Matthew D. Sampson, Kyle A. Grice, Eric E. Benson, Jesse D. Froehlich, and Clifford P.

Hard Soft Acid Base Theory - Coordination Trends in Alkali Metal Crown Ether Uranyl Halide Complexes: The Series [A(Crown)]2[UO2X4] Where A = Li, Na, K, and X = Cl, Br

Submitted by Gerard Rowe / University of South Carolina Aiken on Tue, 07/01/2014 - 11:13
Description

In this literature discussion, students are asked to read an article describing a series of uranyl halide compounds that contain an alkali counterion that interacts with one or more of the uranium's ligand atoms.  This paper stands out as a great example of the binding preferences of acids and bases, and can be explained very well using simple HSAB concepts.

Student choice literature-based take home exam question

Submitted by Hilary Eppley / DePauw University on Fri, 01/24/2014 - 15:27
Description

During my junior/senior level inorganic course, we did several guided literature discussions over the course of the semester where the students read papers and answered a series of questions based on them (some from this site!).  As part of my take home final exam, I gave the students an open choice literature analysis question where they had the chance to integrate topics from the semester into their interpretation of a recent paper of their own choice from Inorganic Chemistry, this time with limited guidance.

QSAR and Inorganic Chemistry

Submitted by Vanessa / Albion College on Thu, 06/27/2013 - 14:59
Description

This presentation provides a short introduction to Quantitative Structure-Activity Relationships and its use in Inorganic Chemistry. A brief introduction to Linear-Free Energy Relationships and the Hammett Equation is given, followed by three examples of how QSARs have been used in inorganic chemistry.