Stable Borepinium and Borafluorenium Heterocycles: A Reversible Thermochromic “Switch” Based on Boron–Oxygen Interactions by Robert J. Gilliard Jr.

Submitted by Niharika K Botcha / Carnegie Mellon University on Fri, 06/30/2023 - 10:27
Description

This literature discussion on the Hot Paper communication in Chemistry, A European Journal; highlights the first examples of borepinium and borfluorenium cations whose optical properties can be tuned and also the very first reported example of thermochromism in these cationic species. R. J. Gilliard, Chem. Eur. J. 2019, 25, 12512. https://doi.org/10.1002/chem.201903348

2023 Content Building Workshop - Morgan State University

Submitted by Chip Nataro / Lafayette College on Tue, 06/27/2023 - 10:56

This is a list of all of the learning objects developed in association with the 2023 content building workshop. Prof. Robert Gilliard was the featured speaker for this workshop, so most of the LOs will focus on his work.

Inorganic Chemistry

Submitted by Daniel Ashley / Spelman College on Thu, 06/22/2023 - 16:48
Description

Rigorous treatment of the chemistry of inorganic compounds, including structure, properties, and reactions, and their interpretation in terms of quantum chemistry, and solid state chemistry; analysis with modern instrumentation.

Advanced Organic Chemistry (Spectroscopy)

Submitted by Fasil Abebe / Morgan State University on Wed, 06/21/2023 - 18:45
Description

The course covers the principles and methods at an advanced level in modern chemical analysis. Topic includes chemical structure determination, separation of mixtures, chemical methods, infrared spectroscopy (IR), mass spectrometer (MS), nuclear magnetic spectroscopy, and ultraviolet-visible spectroscopy (UV/vis).

Balloon Built Molecular Orbitals

Submitted by Darren Achey / Kutztown University on Wed, 06/21/2023 - 11:58
Description

In this activity, students will collectively build molecular orbitals for homonuclear diatomic molecules using balloons as models for atomic orbitals. This activity gets students up and moving and involved in the building of an MO diagram and allows for 3-D visualization of the core concepts of building molecular orbitals from atomic orbitals.

Inorganic Chemistry Laboratory

Submitted by Cody Webb Jr / Hartwick College on Wed, 06/14/2023 - 02:02
Description

Students perform weekly laboratory experiments to explore and apply concepts covered in the lecture
component of the course.

Inorganic Chemistry I

Submitted by Cody Webb Jr / Hartwick College on Wed, 06/14/2023 - 01:57
Description

This course focuses on the chemistry of the elements, including electronic structure, bonding and
molecular structure, ionic solids, coordination compounds, the origins of the elements, and the descriptive
chemistry of the elements. Topics also include inorganic synthesis, materials science, industrial chemistry,
and an introduction to bioinorganic chemistry.

Materials Chemistry

Submitted by Deborah Polvani / Washington & Jefferson College on Mon, 06/12/2023 - 09:33
Description

Materials Chemistry will explore many of the fundamental relationships between a material’s chemical structure and the subsequent interesting and useful properties that result.  In order for advances in electronic, magnetic, optical, and other niche applications to be made, an understanding of the structure-property relationship in these materials is crucial.  This course will emphasize inorganic systems, and topics will include descriptions of various modern inorganic solid-s

Advanced Inorganic Chemistry

Submitted by Deborah Polvani / Washington & Jefferson College on Mon, 06/12/2023 - 09:18
Description

This course will explore many of the fundamental principles of inorganic chemistry, with significant emphasis on group theory, molecular orbital theory, angular overlap theory, coordination chemistry, organometallic chemistry, and bio-inorganic chemistry. Specific topics will vary, but will generally include coverage of atomic structure, simple bonding theory, donor-acceptor chemistry, the crystalline solid state, coordination compounds and isomerism, electronic and infrared spectroscopy applied to inorganic complexes, substitution mechanisms, and catalysis.