Advanced Inorganic Chemistry

Submitted by John Miecznikowski / Fairfield University on Sun, 06/02/2019 - 16:48
Description

This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry.  After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced.   A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory.  The students will use symmetry and group theory approaches to understand central atom hybridization, ligand

Inorganic Chemistry

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 05/22/2019 - 10:42
Description

This course introduces the chemistry of transition metals and main group elements. Topics include theories of bonding, kinetics and mechanisms of reactions of transition metal complexes, oxidation-reduction reactions, hard-soft acid-base theory, and solid-state chemistry. Applications of inorganic chemistry to other areas (organic, analytical, and physical chemistry, as well as biology and biochemistry) are highlighted throughout the course. The laboratory portion of the course involves the synthesis and spectroscopic investigation of inorganic complexes.

Rates of Chemical Reactions

Submitted by Kerber / Bucknell University on Wed, 05/15/2019 - 10:00
Description

Part 9 of the Flipped Learning in General Chemistry Series. This video explores the concept of reaction rate and shows how the rates of change of reactant and product concentrations vary during the course of a reaction.

Redox-switch polymerization catalysis

Submitted by Chip Nataro / Lafayette College on Tue, 03/26/2019 - 13:49
Description

This is the full literature discussion based on a communicaiton (J. Am. Chem. Soc. 2011133, 9278). This paper describes a redox-switch yttrium catalyst that is an active catalyst for the polymerization of L-lactide in the reduced form and inactive in the oxidized form. The catalyst contains a ferrocene-based ligand that serves as the redox active site in the catalyst. This full literature discussion is an extension of the one figure literature discussion that is listed below.

1FLO: Redox-switch polymerization catalysis

Submitted by Chip Nataro / Lafayette College on Fri, 03/22/2019 - 16:11
Description

This is what I hope will be a new classification of learning object called a one figure learning object (1FLO). The purpose is to take a single figure from a paper and present students with a series of questions related to interpreting the figure. This literature discussion is based on a paper (J. Am. Chem. Soc. 2011, 133, 9278) from Paula Diaconescu's lab in which a yttrium polymerization catalyst with a ferrocene-based ligand can effectively be rendered active or inactive depeneding on the valence state of the ligand.

Inorganic Chemistry

Submitted by Kari Young / Centre College on Mon, 01/28/2019 - 11:23
Description

A study of the chemistry of inorganic compounds, including the principles of covalent and ionic bonding, symmetry, periodic properties, metallic bonding, acid-base theories, coordination chemistry, inorganic reaction mechanisms, and selected topics in descriptive inorganic chemistry. Laboratory work is required.

Guided Literature Discussion of “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines”

Submitted by M. Watzky / University of Northern Colorado on Wed, 01/16/2019 - 19:11
Description

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Jana Forster and Kristofer Reiser.  It is based on the article “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines” by Christopher F. Bender, Timothy J. Brown, and Ross A. Widenhoefer in Organometallics 2016 35 (2), 113-125.

Special Topics in Inorganic Chemistry - Inorganic Photochemistry

Submitted by Catherine McCusker / East Tennessee State University on Wed, 01/16/2019 - 17:21
Description

The class is divided into two parts. In the first part students learn the physical principles involved with the absorption of light and the photophysical and photochemical processes that may occur aafter the abosrption of light. The second part uses literature discussions and student presentations to explore applications of photophysical and photochemical reactions in inorganic chemistry 

Interpreting Reaction Profile Energy Diagrams: Experiment vs. Computation

Submitted by Douglas A. Vander Griend / Calvin College on Sat, 06/23/2018 - 10:56
Description

The associated paper by Lehnert et al. uses DFT to investigate the reaction mechanism whereby a flavodiiron nitric oxide reductase mimic reduces two NO molecules to N2O. While being a rather long and technical paper, it does include several figures that highlight the reaction profile of the 4-step reaction. This LO is designed to help students learn how to recognize and interpret such diagrams, based on free energy in this case. Furthermore, using a simple form of the Arrhenius equation (eq.