Principles of Chemistry II

Submitted by Michelle Personick / Wesleyan University on Sun, 06/09/2019 - 08:54
Description

This second semester general chemistry course is a continuation of the Principles of Chemistry sequence that is recommended for science students. The focus of the course is the fundamentals of structure and bonding, with an emphasis on predicting reactivity.

Inorganic Chemistry & Lab

Submitted by Eric Eitrheim / University of Central Oklahoma on Sun, 06/09/2019 - 08:50
Description

CHEM 4654 (CRN: 10411) and the accompanying lab (CHEM 4654L) is worth 4 credit hours. CHEM 4654 covers atomic theory and spectroscopy, periodic properties, descriptive chemistry, inorganic structure and bonding, coordination chemistry, organometallic chemistry, symmetry and group theory.  Students must be concurrently enrolled in CHEM 4654L (CRN: 10412).

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sat, 06/08/2019 - 16:41

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

The Synthesis and Electronic Structure of [NiX4]2- Complexes and the Role of Crown Ethers in Inorganic Synthesis

Submitted by Wes Farrell / United States Naval Academy on Thu, 06/06/2019 - 15:05
Description

This literature discussion aims to have students in an advanced inorganic chemistry course interpret reaction schemes and electronic spectra, relate chemical formulae to molecular structure, and gain an understanding of how inorganic synthesis is planned and executed.  Students should gain an understanding of how counterions and crown ethers affect structure. Question 7 may be expanded to ask students to why pi-donor ability affects ligand field splitting, or as an introfuction to this topic.

An associated 1FLO based on this paper is linked in the related content.

 

Inorganic Chemistry

Submitted by Joanne Smieja / Gonzaga University on Wed, 06/05/2019 - 11:46
Description

Introduction to foundational concepts in inorganic chemistry with emphasis on atomic structure, bonding, and reactivity. Topics will include nuclear chemistry, quantum mechanics, periodic trends, covalent bonding, ionic bonding, metallic bonding, coordinate covalent bonding, acid-base chemistry, electrochemistry, and thermodynamics.

Advanced Inorganic Chemistry

Submitted by Jeremy R. Andreatta / Worcester State University on Tue, 06/04/2019 - 23:07
Description

This course is a survey of the chemistry of the inorganic elements focusing on the relationship between electronic structure, physical properties, and reactivity across the periodic table. Topics to be covered include: atomic structure, chemical bonding, group theory, spectroscopy, crystal field theory, coordination chemistry, organometallic chemistry and catalysis, and bioinorganic chemistry.  Prerequisites: Successful completion of CH120, CH121, (with a C- or better) and CH 301 (suggested)

Inorganic Chemistry

Submitted by Colleen Partigianoni / Ferris State University on Tue, 06/04/2019 - 22:54
Description

Course Description: An overview course covering the fundamental principles and theories of inorganic chemistry, with emphasis on the chemistry of d-block elements. Included topics are molecular structure, electronic structure and spectra, bonding descriptions and reaction mechanisms of coordination complexes along with an introduction to organometallic compounds of d-block elements and an introduction to molecular symmetry and point groups.