VIPEr Fellows 2022 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sun, 06/26/2022 - 14:31

The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

SALC: An Orbital Arrangement Game

Submitted by Madalyn Radlauer / San Jose State University on Wed, 06/15/2022 - 00:13
Description

We have developed a tabletop game to help students get comfortable with symmetry adapted linear combinations of orbitals (SALCs), a conceptual model used to understand bonding in molecular orbital theory. We have found that students often get anxious about SALCs and miss not only the visual connections to symmetry, but also the fun! This LO includes information about the game, files you can use to print your own copy as well as a link in case you want to purchase a copy, and an example of how it might be incorporated into the classroom. 

Bioinorganic Chemistry
Description

Metals in biological systems can perform a wide range of reactions with exquisite efficiency and selectivity. In contrast, performing many of the same reactions in the lab requires harsh conditions and/or rare, expensive materials.

KVH / Harvey Mudd College Wed, 06/08/2022 - 13:46

Discussion of "Dirhodium(II/II)/NiO Photocathode for Photoelectrocatalytic Hydrogen Evolution with Red Light" (Turro)

Submitted by Jason D'Acchioli / University of Wisconsin-Stevens Point on Sat, 05/21/2022 - 12:13
Description

This Learning Object is dedicated to Prof. Claudia Turro as part of the VIPEr LGBTQIAN+ LO collection created in celebration of Pride Month (Jun) 2022. Prof. Turro was featured in the April 2022 special virtual issue Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists (https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00729). Claudia holds a special place in my heart. I came out later in life, and she was incredibly supportive as I wrestled with my identity as a gay man.

Inorganic Chemistry

Submitted by Martin McPhail / University of West Georgia on Thu, 05/19/2022 - 15:19
Description

The wave nature of electrons is applied to atomic structure and periodic trends. Inter and intramolecular bonding models are used to interpret the chemical and physical properties of various materials, from simplistic diatomic molecules to structurally complex molecular and ionic systems.

5 Slides about:Photophysics and photochemistry of MLCT excited states (Wilson)

Submitted by Tracky Huang / Cornell University on Tue, 03/15/2022 - 13:54
Description

This Five Slides About will introduce the basic photophysical and photochemical concepts associated with the metal-to-ligand charge-transfer (MLCT) transitions using luminescent rhenium and ruthenium complexes as examples. The potential therapeutic use of photoactivated metal complexes to kill cancer cells is also presented.

Toward the Design of Phosphorescent Emitters of Cyclometalated Earth-Abundant Nickel(II) and Their Supramolecular Study (Yam)

Submitted by Kyle Grice / DePaul University on Tue, 03/08/2022 - 15:15
Description

This LO was created to celebrate Dr. Vivian W.-W. Yam's 2022 ACS Award, the Josef Michl Award in Photochemistry. These questions are written to help guide class discussion about this paper and the complexes in it. This LO would be good for an organometallics class or similar upper-division inorganic chemistry class. 

Review of Atomic Orbitals and Guided Tour of the Orbitron

Submitted by Patrick Lutz / St. Lawrence University on Mon, 02/21/2022 - 11:08
Description

This activity was created to extend the "First Day Review of Atomic Orbitals" LO to take up a full class period. The first part of the activity is likely familiar to many VIPER users, asking students to brainstorm and review key concepts related to atomic orbitals. (The author participated in this very activity as a student circa 2010!) The second part of this LO is new and leads students on a guided tour of the Orbitron website to review or discover the shapes of atomic orbitals and their nodal properties.