Metal MACiE Database

Submitted by Anthony L. Fernandez / Merrimack College on Mon, 07/16/2012 - 11:21
Description

As a non-bioinorganic chemist, I am always looking for resources to help me teach bioinorganic chemistry in both my sophomore-level and advanced inorganic chemistry courses.  The "metalloproteome" was the subject of an article in the December 12, 2011 issue of C&E News ("Merging Metals into Proteomics: Tackling the Systematic Study of Metalloproteins").  In this article, the author mentions a new database, called Metal MACiE, of metals in metalloenzymes.

The Covalent Bond Classification (CBC) website

Submitted by Chip Nataro / Lafayette College on Thu, 05/17/2012 - 09:27
Description

The covalent bond classification (CBC) method is a way to count electrons for transition metal compounds. It classifies ligands based on their type, either L, X or Z. This is the website for all things CBC. It contains a library which list useful materials for teaching CBC including books that teach the CBC method. The site also has teaching materials that contain MLX plots for all of the transition metals. The MLX plots are charts that show various electron counts and valence for a given metal.

Manganese carbonyl calculation addition

Submitted by Adam Johnson / Harvey Mudd College on Mon, 10/03/2011 - 01:00
Description

This is an addendum to the Manganese Carbonyl experiment (linked below).  In this part of the experiment, students carry out high level quantum mechanical calculations of reactants, intermediates, and products in order to determine which of two possible structures is correct.

Exposure to Computational Chemistry: Reinforcing Concepts in Inorganic Chemistry

Submitted by Christine Thomas / Ohio State University on Sat, 06/25/2011 - 14:04
Description

Groups of 2-4 students (depending on class size) are each assigned a different collaborative project that involves using DFT calculations to evaluate some of the principles of inorganic structure and bonding developed in lectures throughout the semester.  Each “project” involves comparing the computed properties (spectroscopic (IR), geometric,or relative energies) of a series of molecules and drawing conclusions about the observed differences using concepts developed in class.

Periodic trends in atomic size and electronegativity based on MO calculations

Submitted by Rob Scarrow / Haverford College on Sat, 06/25/2011 - 13:38
Description

In Haverford College's course Chem 111:Structure and Bonding, we have included a workshop exercise that guides students through their first experience using electronic structure calculations.  We use the WebMO interface along with Gaussian03, but the exercise could be adapted for other electronic structure programs. The general structure of the exercise is as follows:

Geometry and Magnetism Worksheet_ Bioinorganic

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 06/23/2011 - 14:55
Description

This is an in class exercise that I use to introduce structure and magnetism to a junior/senior level course on bioinorganic chemistry. The class is cross-listed between Chemistry and Biochemistry. All of the students have had general chemistry and organic (with some exposure to MO Theory). Many of the students have also had the sophomore-level inorganic course, which delves extensively into MO theory, and some of the the students have also had the senior-level course on transition metal chemistry which looks deeply at d-orbital splitting.

Ligand Field Theory in Coordination Complexes- In Class Exercise

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 02/17/2011 - 14:19
Description

This is an In class exercise on the subject of Ligand Field theory.  It reviews nomenclature and introduces ideas of ligand field splitting and spin in transition metal complexes.  It includes both a worksheet for classroom use, a worksheet key which includes some information not on the student worksheet .

The Electronic Properties of tris-(2,2'-bipyridine)-ruthenium(II) Lab Experiment(s)

Submitted by Jared Paul / Villanova University on Wed, 02/02/2011 - 19:41
Description

This is a lab experiment designed to cover an array of techniques, including metal complex synthesis, spectroscopy and electrochemistry.  Overall, the goal is to synthesize the metal complex Ru(bpy)32+, exchange the counter ion to demonstrate changes in solubility, absorbance and emission properties (including excited state quenching through energy and electron transfer, and ground state oxidation), as well as cyclic voltammetry of the complex.

Student Literature-Based Organometallic Lecture

Submitted by Jeffrey Rood / Elizabethtown College on Mon, 01/03/2011 - 14:42
Description
I taught an advanced inorganic chemistry course for the first time this past fall. I focused strictly on organometallic chemistry and we used Spessard and Miessler's book. Because this book is focused on transition metal organometallics, I wanted the students to appreciate some of the organometallic chemistry of the s- and p-block (and zinc). Students worked in pairs (the class size was 12) and had most of the semester to research the literature and develop a 40-50 minute lecture. I also had them develop homework questions and an in class activity to help engage the other students.

First Isolation of the AsP3 Molecule

Submitted by Anne Bentley / Lewis & Clark College on Fri, 09/03/2010 - 13:47
Description

Early in 2009, Christopher Cummins’ group at MIT reported (in Science) the synthesis of AsP3, a compound that had never been isolated at room temperature.  Later that year, a full article was published in JACS comparing the properties and reactivity of AsP3 to those of its molecular cousins, P4 and As4.  The longer article is full of possibilities for discussion in inorganic chemistry courses, with topics including periodic trends, NMR, vibrational spectroscopy, electrochemistry, molecular orbital theory, and coordination chemistry.