Special Topics in Inorganic Chemistry - Inorganic Photochemistry

Submitted by Catherine McCusker / East Tennessee State University on Wed, 01/16/2019 - 17:21
Description

The class is divided into two parts. In the first part students learn the physical principles involved with the absorption of light and the photophysical and photochemical processes that may occur aafter the abosrption of light. The second part uses literature discussions and student presentations to explore applications of photophysical and photochemical reactions in inorganic chemistry 

Advanced Inorganic Chemistry

Submitted by Darren Achey / Kutztown University on Tue, 09/11/2018 - 14:50
Description

The application of physio-chemical principles to understanding structure and reactivity in main group and transition elements. Valence Bond, Crystal Field, VSEPR, and LCAO-MO will be applied to describe the bonding in coordination compounds. Organometallic and bio-inorganic chemistry will be treated, as will boranes, cluster and ring systems, and inorganic polymers. The laboratory will involve both synthetic and analytic techniques and interpretation of results.

Inorganic Chemistry

Submitted by Nicole Crowder / University of Mary Washington on Mon, 01/22/2018 - 10:45
Description

Modern theories of atomic structure and chemical bonding and their applocations to molecular and metallic structures and coordination chemistry.

Inorganic Chemistry Laboratory

Submitted by Anne Bentley / Lewis & Clark College on Wed, 01/17/2018 - 13:58
Description

Introduction to classical and modern techniques for
synthesizing inorganic compounds of representative and transition
metal elements and the extensive use of IR, NMR, mass, and UV-visible
spectroscopies and other physical measurements to characterize
products. Syntheses and characterization of inorganic and organic
materials/polymers are included. Attendance at departmental seminars
required. Lecture, laboratory, oral presentations.

Inorganic Chemistry II

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 14:03
Description

This course uses molecular orbital theory to explain the electronic structure and reactivity of inorganic complexes. Topics include symmetry and its applications to bonding and spectroscopy, electronic spectroscopy of transition-metal complexes, mechanisms of substitution and redox processes, organometallic and multinuclear NMR.

 

Additional notes

I do not require a formal text but George Stanley's organometallic chemistry 'book' on VIPEr is made available to students (the link is found below).

Inorganic Chemistry I with Laboratory

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 12:17
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

Advanced Inorganic Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 01/10/2018 - 18:20
Description

Modern concepts of inorganic and transition-metal chemistry
with emphasis on bonding, structure, thermodynamics, kinetics and
mechanisms, and periodic and family relationships. Atomic structure,
theories of bonding, symmetry, molecular shapes (point groups), crystal
geometries, acid-base theories, survey of familiar elements, boron
hydrides, solid-state materials, nomenclature, crystal field theory,
molecular orbital theory, isomerism, geometries, magnetic and optical
phenomena, spectra, synthetic methods, organometallic compounds,

Redox Chemistry of a Potential Solid State Battery Cathode – Discuss!

Submitted by Sabrina Sobel / Hofstra University on Mon, 08/07/2017 - 14:01
Description

Lithium battery technology is an evolving field as commercial requirements for storage and use of energy demand smaller, safer, more efficient and longer-lasting batteries. Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4.

Literature Discussion of R3CH→ SiFR3 Agostic Interactions

Submitted by tgupta / South Dakota State University on Sat, 06/03/2017 - 11:53
Description

The set of questions in this literature discussion activity is intended to engage students in reading and interpreting scientific literature and to develop a clear and coherent understanding of agostic interactions.