NMR Coin-Flip Game

Submitted by azmanam / Butler University on Fri, 06/15/2012 - 09:19
Description

A simple coin-flipping game to help students understand the origin of spin/spin splitting in 1H NMR.

Geometry and Magnetism Worksheet_ Bioinorganic

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 06/23/2011 - 14:55
Description

This is an in class exercise that I use to introduce structure and magnetism to a junior/senior level course on bioinorganic chemistry. The class is cross-listed between Chemistry and Biochemistry. All of the students have had general chemistry and organic (with some exposure to MO Theory). Many of the students have also had the sophomore-level inorganic course, which delves extensively into MO theory, and some of the the students have also had the senior-level course on transition metal chemistry which looks deeply at d-orbital splitting.

Catalysis using functionalized mesoporous silica

Submitted by Randall Hicks / Wheaton College on Wed, 05/25/2011 - 10:30
Description

This paper, while not fundamentally groundbreaking, serves as a nice introduction to the field of mesoporous materials. I like that it covers synthesis, characterization, and an application of the materials. I have used this paper in our senior seminar course as the basis for discussion of this area of chemistry. Discussion questions cover aspects of sol-gel chemistry, powder diffraction, gas adsorption, IR, solid state NMR, UV-Vis, and catalysis.  

Teaching Tanabe-Sugano Diagrams

Submitted by Sheila Smith / University of Michigan- Dearborn on Tue, 05/03/2011 - 11:12
Description

For years, I spent 2-3 days a semester working through Tanabe-Sugano diagrams, their development from terms, their evolution from Orgel diagrams, their analysis to give transition energies (the old ruler- trial and error analysis) and nephalauxetic parameters.  Recently, colleagues in VIPEr convinced me that my time in class could be better spent, but I am not willing to completely give up on Tanabe-Sugano.

The Electronic Properties of tris-(2,2'-bipyridine)-ruthenium(II) Lab Experiment(s)

Submitted by Jared Paul / Villanova University on Wed, 02/02/2011 - 19:41
Description

This is a lab experiment designed to cover an array of techniques, including metal complex synthesis, spectroscopy and electrochemistry.  Overall, the goal is to synthesize the metal complex Ru(bpy)32+, exchange the counter ion to demonstrate changes in solubility, absorbance and emission properties (including excited state quenching through energy and electron transfer, and ground state oxidation), as well as cyclic voltammetry of the complex.

First Isolation of the AsP3 Molecule

Submitted by Anne Bentley / Lewis & Clark College on Fri, 09/03/2010 - 13:47
Description

Early in 2009, Christopher Cummins’ group at MIT reported (in Science) the synthesis of AsP3, a compound that had never been isolated at room temperature.  Later that year, a full article was published in JACS comparing the properties and reactivity of AsP3 to those of its molecular cousins, P4 and As4.  The longer article is full of possibilities for discussion in inorganic chemistry courses, with topics including periodic trends, NMR, vibrational spectroscopy, electrochemistry, molecular orbital theory, and coordination chemistry.

Kinetics of Ligand Substitution Reactions of a Pt(II) Complex

Submitted by Scott Cummings / Dominican University on Sat, 07/17/2010 - 11:47
Description
This inorganic lab experiment, focusing on the kinetics of ligand-substitution reactions of a square-planar Pt(II) complex, involves collecting UV-vis absorption data and analyzing the results to determine a rate law to support one of three proposed mechanisms.

Video explanations and practice problems of basic chemistry and math topics

Submitted by Lori Watson / Earlham College on Wed, 02/24/2010 - 15:34
Description

This is a website which links to a wide variety of good quality YouTube mini-lectures on basic topics in chemistry, mathematics, physics and a variety of other sciences.  Each video is about 10 minutes long and many go through example problems slowly and completely.