VIPEr Fellows 2019 Workshop Favorites
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
Guided reading and in-class discussion questions for "High-Spin Square-Planar Co(II) and Fe(II) Complexes and Reasons for Their Electronic Structure."
Catalog Description: Concepts and models in inorganic chemistry with emphasis on atomic structure and bonding, molecular orbital theory, material science, and descriptive inorganic chemistry including biological and environmental applications.
This course is composed of two components:
A. Lecture:
This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Christopher Lasterand Patrick Wilson. It is based on the article “Deca-Arylsamarocene: An Unusually Inert Sm(II) Sandwich Complex” by Niels J. C.
An overview of descriptive main group chemistry, solid state structures and the energetics of ionic, metallic, and covalent solids, acid-base chemistry and the coordination chemistry of the transition metals. The course is intended to explore and describe the role of inorganic chemistry in other natural sciences with an emphasis on the biological and geological sciences. Important compounds and reactions in industrial chemistry are also covered. Intended for both chemistry and non-chemistry majors.
Introduction to classical and modern techniques for
synthesizing inorganic compounds of representative and transition
metal elements and the extensive use of IR, NMR, mass, and UV-visible
spectroscopies and other physical measurements to characterize
products. Syntheses and characterization of inorganic and organic
materials/polymers are included. Attendance at departmental seminars
required. Lecture, laboratory, oral presentations.
Topics in inorganic chemistry, including periodicity and descriptive chemistry of the elements, electrochemistry, transition metal coordination chemistry, and the structure and properties of solid state materials. Laboratories emphasize synthesis and characterization of inorganic coordination compounds, electrochemistry, and inorganic materials. This course satisfies the second semester of a one-year General Chemistry requirement for post-graduate Health Professions programs. Prerequisite, 120 or 125. Three hours of lecture and three hours of laboratory.
This course uses molecular orbital theory to explain the electronic structure and reactivity of inorganic complexes. Topics include symmetry and its applications to bonding and spectroscopy, electronic spectroscopy of transition-metal complexes, mechanisms of substitution and redox processes, organometallic and multinuclear NMR.
Additional notes
I do not require a formal text but George Stanley's organometallic chemistry 'book' on VIPEr is made available to students (the link is found below).
Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.