Colored Note Cards as a Quick and Cheap Substitute for Clickers

Submitted by Chris Bradley / Mount St. Mary's University on Tue, 07/17/2012 - 10:23
Description

For many years I have resisted using clickers, mainly because at our university there is no standard universal clicker. I wanted to keep student costs as low as possible but also desired the type of live feedback during a lecture that clicker questions can provide. In both my general chem. (200-300 students) and upper division courses (50-75 students), I now pass out 4 or 5 colored notecards on the first day of class and make sure everyone has one of each color.

Manganese carbonyl calculation addition

Submitted by Adam Johnson / Harvey Mudd College on Mon, 10/03/2011 - 01:00
Description

This is an addendum to the Manganese Carbonyl experiment (linked below).  In this part of the experiment, students carry out high level quantum mechanical calculations of reactants, intermediates, and products in order to determine which of two possible structures is correct.

The Eyring Equation

Submitted by Adam Johnson / Harvey Mudd College on Thu, 09/29/2011 - 01:46
Description

I was taught (many years ago) the common misconception that fitting the linearized form of the Eyring equation overstates the error in the intercept because on a 1/T axis, the intercept is at infinite temperature, and the intercept is far from the real data. While researching various methods of data fitting, I stumbled across this great article from the New Journal of Chemistry (New J.

Exposure to Computational Chemistry: Reinforcing Concepts in Inorganic Chemistry

Submitted by Christine Thomas / Ohio State University on Sat, 06/25/2011 - 14:04
Description

Groups of 2-4 students (depending on class size) are each assigned a different collaborative project that involves using DFT calculations to evaluate some of the principles of inorganic structure and bonding developed in lectures throughout the semester.  Each “project” involves comparing the computed properties (spectroscopic (IR), geometric,or relative energies) of a series of molecules and drawing conclusions about the observed differences using concepts developed in class.

Periodic trends in atomic size and electronegativity based on MO calculations

Submitted by Rob Scarrow / Haverford College on Sat, 06/25/2011 - 13:38
Description

In Haverford College's course Chem 111:Structure and Bonding, we have included a workshop exercise that guides students through their first experience using electronic structure calculations.  We use the WebMO interface along with Gaussian03, but the exercise could be adapted for other electronic structure programs. The general structure of the exercise is as follows:

Computational Inorganic Chemistry: An Introduction

Submitted by Rebecca M. Jones / George Mason University on Wed, 03/09/2011 - 16:00
Description

The attached lecture provides a brief overview to computational methods and introduces their application to inorganic systems.  Two specific literature examples are included.  I have given this lecture in a senior level advanced inorganic chemistry class for the past 3 years.

hybrid orbitals for main group and transition metal complexes

Submitted by Adam Johnson / Harvey Mudd College on Tue, 03/08/2011 - 22:58
Description
This handout shows how the s, p and d orbitals of appropriate symmetry can mix in Cnv and Dnh point groups (n = 3-4). A high-level Gaussian calculation serves to "back up" my "back-of-the-envelope" drawings of some of the hybrid orbitals.

Synthesis and Molecular Modeling of Sodium Tetrathionate

Submitted by Kim Lance / Ohio Wesleyan University on Sat, 07/17/2010 - 12:01
Description
This experiment is a computational supplement to synthesis of sodium tetrathionate described in "Macroscale Inorganic Chemistry:  A Comprehensive Laboratory Experience".*  Students will synthesize one sulfur oxyanion (tetrathionate), optimize and compute IR spectra for their synthesized product.   In addition, students will predict (using symmetry arguments) and then compute the IR vibrational modes for six additional sulfur oxyanions.  A comparison of theoretical (IR spectra),