Visualization of Zeolite Structure

Submitted by EGunn / Simmons College on Tue, 01/06/2015 - 15:56
Description

Students use a Java-based website to explore the faujasite zeolite structure. The activity questions guide them through identifying different atomic positions within the structure, and orienting the zeolite pores and "cages" relative to the crystal axes. 

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

A Tale of Two Structures

Submitted by Chip Nataro / Lafayette College on Tue, 08/12/2014 - 10:32
Description

In this activity, students will compare and contrast two closely related structures, [Pd(dcpf)PR3]2+ (dcpf = 1,1'-bis(dicyclohexylphosphino)ferrocene; R = Me or Ph). They will be required to obtain the cif files from the supporting information of a paper. They will then make a variety of measurments in the two stuctures. These measurements can be made using a variety of different freely available programs. Instructions are provided for Mercury 3.3 and Olex2. Finally, students will be required to provide a rationale for the differences in the two structures.

Suite of LOs on Biomimetic Modeling

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 09:52

This suite of activities can be used as a unit exploring the use of small molecule models and biophysical techniques to illuminate complicated biomolecules.  The Parent LO:  Modeling the FeB center in bacterial Nitric Oxide reductase is a short, data-filled and well-written article that is approachable with an undergraduate's level of understanding.

Utilizing the PDB and HSAB theory to understand metal specificity in trafficking proteins

Submitted by EGunn / Simmons College on Thu, 07/17/2014 - 15:19
Description

This is an in-class PDB exercise based on the paper "Mechanisms Controlling the Cellular Metal Economy" by Gilston and O'Halloran. Students are asked to visualize the metal binding sites of several proteins discussed in the paper, highlighting unusual metal geometries. After identifying the amino acid residues involved in metal binding, students will discuss the bond structure in terms of HSAB theory. 

Exploring Post-Translational Modification with DFT

Submitted by Gerard Rowe / University of South Carolina Aiken on Thu, 07/17/2014 - 12:52
Description

This activity is designed to give students a deeper understanding of what post-translational modification does in a metalloenzyme using nitrile hydratase (NHase) as a model system.  The metallo-active site of NHase contains a cobalt(III) center that is bound to an unusual coodination sphere containing bis-amidate, cysteinate, sulfenate (RSO-), and sulfinate (RSO2-) ligands.

The Synthesis and Characterization of a trans-Dioxorhenium(V) Complex

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Mon, 07/14/2014 - 12:31
Description

This experiment involves the preparation of a key starting reactant in high purity and yield for an ongoing research project, specifically for the development of potential photodynamic therapy (PDT) agents. The students synthesize [ReO2(py)4]Cl.2H2O using standard inorganic synthesis techniques. The students visualize the vibrations and electronic properties (e.g. molecular orbitals) of the compound using output files generated from density functional theory (DFT).

Inorganic Spectroscopy Introduced Using an Interactive PhET Simulation (Part 1)

Submitted by Alycia Palmer / The Ohio State University on Wed, 04/30/2014 - 20:49
Description

A guided-inquiry activity for the interactive PhET simuation "Molecules and Light" was created to introduce upper-level inorganic laboratory students to inorganic spectroscopy. The activity included here is the first part of a two-day discussion. This activity instructs students to use the PhET simulation "Molecules and Light" to explore how various molecules interact with different energies of electromagnetic radiation (microwave, infrared, visible, ultraviolet). This activity can also be used in a general chemistry setting as the topics discussed are very basic.