Dinitrogen activation with "Side-on" N2 complexes

Submitted by Tarun Narayan / Harvey Mudd College on Wed, 12/16/2009 - 16:49
Description
This powerpoint presentation was created as part of the requirements for Chemistry 165 "Organometallics" at Harvey Mudd College during the fall semester 2009.  The authors of this presentation are Kristine Fong, Eric Nacsa and Tarun Narayan, all from Harvey Mudd College.  The activity consists of three items:  a powerpoint presentation, a script that goes along with the presentation, and a literature review (annotated bibliography) for further reading. 

Coordination chemistry via Inorganic Chemistry ASAP

Submitted by Hilary Eppley / DePauw University on Mon, 09/14/2009 - 11:23
Description
This in-class activity is a fun way to show students how to apply basic concepts of coordination chemistry to complicated systems that appear in a recent issue of Inorganic Chemistry. After quickly reviewing types of ligands (monodentate, chelating, bridging), how we assign charge to ligands and metals in complexes, and the idea of coordination number, I took my class through a number of "real world" examples from the latest ASAP edition of Inorganic Chemistry.

Molecular Orbital Diagrams

Submitted by Adam Bridgeman / The University of Sydney on Tue, 07/07/2009 - 03:51
Description

http://firstyear.chem.usyd.edu.au/calculators/mo_diagrams.shtml

Flash based tools to help with the construction of MO diagrams:

  • "energy levels" shows how the form of the bonding and antibonding orbitals, the bond order and atomic charges vary in a diatomic molecule with the electronegativity of the two atoms involved
  • "Molecular orbital diagram maker" shows how a complex MO diagram can be made by a drag and drop approach using symmetry adapted components

 

d-orbitals in a variety of ligand geometries

Submitted by Flick Coleman / Wellesley College on Fri, 03/13/2009 - 20:54
Description

I developed this Jmol page to help my students see the relationship(s) between the ligands and metal d-orbitals in a number of different geometries.  Since the images are all rotatable, students who have difficulty looking at flat images and drawing appropriate conclusions have that barrier reduced or eliminated.  I have now used the application twice - this past fall in the second semester of introductory chemistry and a few weeks ago when I began ligand field theory in my inorganic course.  In both classes I received favorable comments.  A number of students in the inorganic course, who h

How molecular orbitals change as atomic energy levels shift

Submitted by Flick Coleman / Wellesley College on Wed, 03/11/2009 - 18:11
Description

Over the years I have developed a number of interactive tools that I use in my classes. This is a tool that seems appropriate for VIPEr. Comments are always appreciated, and I am always interested in developing new tools if there is something you might find useful.

This tool allows you to look at how molecular orbitals change as the difference in electronegativities of the parent atomic orbitals increases.

 

Inorganic Challenges

Submitted by Patrick Holland / Yale University on Tue, 03/10/2009 - 15:39
Description

The Interactive Inorganic Challenge Forum is a resource for inorganic chemistry teachers who want to incorporate team learning questions (“Challenges”) into an upper level undergraduate inorganic course. Through this site, teachers can exchange their ideas with others who have used inorganic chemistry Challenges. As a result, students benefit from field-tested group questions.

Group 10 and 11 Metal Boratranes (Ni, Pd, Pt, CuCl, AgCl, AuCl, and Au+) Derived from a Triphosphine-Borane

Submitted by Lori Watson / Earlham College on Sun, 03/08/2009 - 15:21
Description
This is a guided set of questions for the paper: Group 10 and 11 Metal Boratranes (Ni, Pd, Pt, CuCl, AgCl,
AuCl, and Au+) Derived from a Triphosphine-Borane.  It was used to help students integrate the study of a variety of techniques (for example NMR, X-ray, computational studies) and basic organometallic chemistry into reading a "real" paper.

House: Inorganic Chemistry

Submitted by Adam Johnson / Harvey Mudd College on Mon, 01/12/2009 - 15:35
Description

House (Inorganic chemistry):  The book is divided into 5 parts:  first, an introductory section on atomic structure, symmetry, and bonding; second, ionic bonding and solids; third, acids, bases and nonaqueous solvents; fourth, descriptive chemistry; and fifth, coordination chemistry.  The first three sections are short, 2-4 chapters each, while the descriptive section (five chapters) and coordination chemistry section (seven chapters covering ligand field theory, spectroscopy, synthesis and reaction chemistry, organometallics, and bioinorganic chemistry.) are longer.  Each chapter includes

Bonding and Electronic Structure of a 14-electron W(II) bound to 4-electron pi-donors

Submitted by Hilary Eppley / DePauw University on Sun, 01/11/2009 - 12:01
Description

This paper is a meaty communication that covers novel bonding of 4 e- π-donors to a 14-electron species. Requires students to apply their knowledge of electron counting and organometallic bonding to ligands that are acting in novel ways.  This also includes exercises dealing with chemical information and general questions that require students to put the science in context.