Quadruple Bond Acrobatics

Submitted by Lori Watson / Earlham College on Tue, 05/28/2019 - 14:40
Description

Four pairs of students represent quadruple bonding in metal complexes by "forming bonds" with a variety of physical methods involving actions like facing each other while holding hands (sigma bond), touch hands and feet of their partner "above and below" the plane (two pi bonds), touching hands and feet while facing each other (delta bond).  This results in a "Twister"-like pile of students resembling the quadruple bonding interaction

 

Teaching Computational Chemistry

Submitted by Joanne Stewart / Hope College on Thu, 05/23/2019 - 14:10

This is a series of in-class exercises used to teach computational chemistry. The exercises have been updated and adapted, with permission, from the Shodor CCCE exercises (http://www.computationalscience.org/ccce). The directions provided in the student handouts use the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

Digital Lab Techniques Manual

Submitted by Catherine McCusker / East Tennessee State University on Wed, 05/22/2019 - 10:54
Description

MIT OpenCourseWare has a great series of videos explaining (synthetic) lab techniques 

CompChem 06: Electron Densities, Electrostatic Potentials, and Reactivity Indices

Submitted by Joanne Stewart / Hope College on Wed, 05/22/2019 - 09:38
Description

This is the sixth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

CompChem 04: Single Point Energies and Geometry Optimizations

Submitted by Joanne Stewart / Hope College on Tue, 05/21/2019 - 10:19
Description

This is the fourth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

CompChem 03: Choice of Theoretical Method

Submitted by Joanne Stewart / Hope College on Mon, 05/20/2019 - 10:54
Description

This is the third in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

In the exercise, students compare the computational results (structures and energies) for different theoretical methods and basis sets.

CompChem 02: Introduction to WebMO

Submitted by Joanne Stewart / Hope College on Mon, 05/20/2019 - 10:11
Description

This is the second in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce).

It was tested on WebMO Version 18 but should work with minimal modification on earlier versions. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).