Group Theory for Mathematicians

Submitted by Anne Bentley / Lewis & Clark College on Wed, 03/26/2014 - 14:18
Description

While informally chatting with friends in our math department, I realized that I could put together a presentation about how chemists use group theory.  I was invited to give the presentation as part of our math department's weekly colloquium series.  The talk was to be one hour in length, and my math colleague described their typical format as:

Viewing Jmol Images and Animations (currently blocked) that call a Jmol Applet

Submitted by Marion Cass / Carleton College on Thu, 03/13/2014 - 22:31
Description

 

    Every day when I teach Inorganic Chemistry (and in most of my problem sets and take home exams) I create Web pages to show 3D images of selected molecules to my students.  I am a visual learner and I find the structures beautiful and informative.

    In the past few months, you likely have found that web sites scripted with Jmol scripts calling a Jmol applet (which is a Java applet) are blocked. 

Molecular Orbital of Transition Metal Complexes

Submitted by Steven Neshyba / University of Puget Sound on Wed, 02/05/2014 - 21:39
Description

Students construct computer models of two transition metal complexes, solve their electronic structures, and inspect the resulting d-type molecular orbitals to identify which are non-bonding, sigma* antibonding, or pi* antibonding. After constructing a molecular orbital diagram, they determine which of the two complexes is likely to absorb light at a longer wavelength.

The Atomic Building

Submitted by Aman Sra / University of Texas at Dallas on Mon, 01/13/2014 - 13:01
Description

Description: This is an in class activity I use for first year general chemistry students to understand the relationship between quantum numbers and the structure of the atom.

 

m&m Language

Submitted by Shirley Lin / United States Naval Academy on Fri, 09/13/2013 - 08:52
Description

This in-class activity is intended to help visualize the meaning of the subscripts and coefficients in molecular formulas that appear in balanced chemical equations. It has been my experience that students in 2nd semester general chemistry can sometimes still be confused about this fundamental aspect of chemical language. It substitutes edible candy for the atoms in a molecular model kit, thus allowing students to eat the atoms at the end. (My philosophy is that if students are eating, they're probably awake and could be learning!)

Five Slides About a Simple powder XRD Analysis

Submitted by Rebecca / The Ohio State University on Sat, 06/29/2013 - 21:28
Description

These slides walk students through a solid state synthesis with a simple powder XRD analysis. This presentation was made to answer the question “How do I know what came out of the furnace?” for a general chemistry audience, assuming very little XRD knowledge. Specifically this shows using XRD with database searching to determine phase purity through pattern matching.

(This does not cover the fundamentals of XRD, please see related links for that.)

 

Brief introduction to local surface plasmons (LSPRs) for nanoparticle color

Submitted by Sarah K. St. Angelo / Dickinson College on Fri, 06/28/2013 - 09:30
Description

This is a very brief introduction to the origin of color in nanoparticle systems.  A link to a video is included in the slides that shows the addition of the reducing agent to the gold precursor solution.  The link is also available as a Web Resourse (below).

Cmap: Concept Mapping Tool

Submitted by Amanda Reig / Ursinus College on Thu, 06/27/2013 - 16:17
Description

Cmap Tools is a powerful free program that can be used to create concept maps.  The program works on any platform.

Thanks to Kurt Birdwhistell for posting the link to this tool to the forum a while back.

Introduction to Synchrotron Radiation

Submitted by Megan Strayer / The Pennsylvania State University on Thu, 06/27/2013 - 15:35
Description

This 5 slides about gives a basic introduction to synchrotron radiation.  Information includes how the particles are accelerated, how they travel to the individual instruments, and where synchrotrons in the USA are located.

Building hybrid nanoparticles

Submitted by Angela Jovanovic-Bischof / Penn State on Thu, 06/27/2013 - 15:02
Description

This in-class activity was created at the NSF-TUES sponsored workshop at Penn State, June 2013.  It is based on the article from Ray Schaak’s group (Buck, Matthew R.; Bondi, James F.; Schaak, Raymond E. “A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles” Nature Chemistry 20124, 37-44, DOI: 10.1038/NCHEM.1195), which Ray presented at the workshop.