Ligand Effects in Pd-Catalyzed Cross Coupling

Submitted by Matt Whited / Carleton College on Fri, 01/09/2015 - 14:30
Description

This set of questions was used to promote discussion within small groups (3 to 4 students) on how changing ligand properties can have dramatic effects on the product distributions in Pd-catalyzed cross coupling reactions.  The questions are pretty difficult and not always straightforward, partly because they are derived from the primary literature and thus inherently "messy".

Learning from UCLA

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Sat, 09/20/2014 - 19:47
Description

This learning object is designed to spark discussion and educate students taking an inorganic chemistry course about laboratory safety.  It uses the article "Learning from UCLA" by Jyllian N. Kemsley (Chemical & Engineering News (2009), Vol. 87 Issue 31, pp.

A Tale of Two Structures

Submitted by Chip Nataro / Lafayette College on Tue, 08/12/2014 - 10:32
Description

In this activity, students will compare and contrast two closely related structures, [Pd(dcpf)PR3]2+ (dcpf = 1,1'-bis(dicyclohexylphosphino)ferrocene; R = Me or Ph). They will be required to obtain the cif files from the supporting information of a paper. They will then make a variety of measurments in the two stuctures. These measurements can be made using a variety of different freely available programs. Instructions are provided for Mercury 3.3 and Olex2. Finally, students will be required to provide a rationale for the differences in the two structures.

Employing 2D NMR and NOE to assign protons in an organometallic complex

Submitted by Sherzod / Northwestern University on Thu, 07/17/2014 - 20:58
Description

The following paper will be given to the students to study at home along with the questions in the attached document. Students will be allowed to discuss their answers in small groups and refine their answers, before the corresct answer is revealed.

The students will not need to see the actual spectra that are in the SI to be able to address the given questions, the spectra can be projected to the class when the answers of the student groups are discussed

Origins of Enantioselectivity during Allylic Substitution Reactions Catalyzed by Metallacyclic Iridium Complexes.

Employing 2D NMR and NOE to assign protons in an organometallic complex

Submitted by Sherzod / Northwestern University on Mon, 07/14/2014 - 18:00
Description

The following paper will be given to the students to read at home along with the questions in the attached document. Students will be allowed to discuss their answers in small groups and refine their answers, before the corresct answer is revealed.

Origins of Enantioselectivity during Allylic Substitution Reactions Catalyzed by Metallacyclic Iridium Complexes.

J. Am. Chem. Soc., 2012, 134 (19), pp 8136–8147

DOI: 10.1021/ja212217j

Dissecting Catalysts for Artificial Photosynthesis

Submitted by Anne Bentley / Lewis & Clark College on Mon, 07/07/2014 - 13:57
Description

Anne asked the students in her junior/senior inorganic course to develop their own literature discussion learning objects and lead the rest of the class in a discussion of their article.  Each student chose one article from a list of suggestions provided.  Student Hayley Johnston chose this article describing a Mn-containing catalyst for carbon dioxide reduction (Jonathan M. Smieja, Matthew D. Sampson, Kyle A. Grice, Eric E. Benson, Jesse D. Froehlich, and Clifford P.

Five Slides About Concurrent Tandem Catalysis

Submitted by Shirley Lin / United States Naval Academy on Thu, 07/03/2014 - 12:54
Description

This set of slides is adapted from a presentation given at the ACS National Meeting in New Orleans Spring 2013 in the symposium "Undergraduate Research at the Frontiers of Inorganic Chemistry" organized by members of the VIPEr leadership council. The slides are from the introduction to the presentation that takes the audience through how catalytic cycles are depicted and then to the concept of concurrent tandem catalysis (CTC). At the end, there is a slide with references that gives an example of how CTC can be applied to aryl halide substrates to form new C-C and C-H bonds.

Properties of olefin complexes: Pt(II) vs Au(III)

Submitted by Margaret Scheuermann / Western Washington University on Sat, 06/21/2014 - 22:01
Description

This is a literature discussion based on a paper titled “Generation and Structural Characterization of a Gold(III) Alkene Complex” (Angew. Chem. Int. Ed. 2013, 52, 1660 - DOI 10.1002/anie.201209140) that reports the first crystallographically characterized Au(III) alkene complex, [(cod)AuMe2] [BArF]. The synthesis and characterization of [(cod)AuMe2] [BArF] are presented. The structural properties are compared to those of the isoelectronic species (cod)PtMe2, and to free cod.

Complexes of alkenes, alkynes, and dienes

Submitted by Margaret Scheuermann / Western Washington University on Sat, 06/21/2014 - 21:35
Description

These slides provide an outline of the significance, bonding, properties, and reactivity of metal alkene, alkyne, and diene complexes appropriate for an upper division organometallics class. Animation is used to construct qualitative MO diagrams for olefins bound to octahedral metal centers that highlight specific bonding and antibonding interactions.

The chemdraw file used to create these slides is also provided.

A Review of 3DMolSym: A Web Resource for Teaching Molecular Symmetry

Submitted by Marion Cass / Carleton College on Fri, 05/23/2014 - 19:22
Description

Introducing you to 3DMolSym:  A Web Resource for Teaching Molecular Symmetry that uses Adobe Shockwave for Visualizations and Animations.

Note there is a slight difference when operating this resource on a Mac or in a Windows Operating Systerm.  On a Mac if you don't change an item (any item) in the pull down menu on the right when the resouce opens, the selection of molecules will be frame shifted by one molecule.  An easy fix is described in the Description below.