X-ray absorption spectroscopy and its applications to LFT

Submitted by Karen McFarlane Holman / Willamette University on Tue, 06/25/2013 - 09:43
Description

This series of (not five) slides introduces X-ray absorption spectroscopy (XAS), specifically XANES (X-ray absorption near-edge structure).  There is background in basic theory, the general technique including synchrotron radiation sources, and two specific examples from the literature that apply XANES spectra to (1) oxidation state and effective nuclear charge of sulfur in various compounds such as sulfates, and (2) measurement of energy levels in MO diagrams of coordination compounds (i.e., LFT).  Point (2) is analogous to showing PES peaks alongside MO diagrams for diatomics.

Trends in Measured Redox Potentials and Computed Molecular Orbital Energies of Derivatized Buckminsterfullerenes

Submitted by Robert Q. Topper / Cooper Union on Tue, 06/25/2013 - 01:55
Description

In this project students are asked to reproduce published calculations of molecular orbital energies of a series of derivatized fullerenes and correlate them with published reduction and oxidation potentials obtained from cyclic voltammetry. The particular subset of the derivatives to be studied are chosen by the student and this choice is part of the learning activity. The students then carry out additional calculations using other theoretical models to see whether they improve the correlation between computed and experimental properties.

Band Structures, Electronic and Optical Properties of Metals, Semiconductors, and Insulators

Submitted by Maggie Geselbracht / Reed College on Tue, 06/25/2013 - 00:32

I created this Collection of Learning Objects (LOs) at the IONiC VIPEr TUES 2013 Workshop: Solid State Materials for Alternative Energy Needs held at Penn State University.  The overall theme of the Collection is electronic and optical properties of metals, semiconductors, and insulators.  Most of the learning objects either require knowledge of or explicitly refer to band structures, either at a basic level or a more advanced level.  Some LOs also deal with extended structures, un

Symmetry, Group Theory, and Computational Chemistry

Submitted by Joanne Stewart / Hope College on Mon, 06/24/2013 - 22:46

These Learning Objects were used in an advanced undergraduate chemistry course that used computational chemistry as an integrative tool to help students deepen their understanding of structure, bonding, and reactivity and practice their integrative expertise by addressing complex problems in the literature and in their own research.

Lattice Systems Origami

Submitted by Jeremiah / Plymouth State University on Mon, 06/24/2013 - 10:31
Description

Covers the geometries and symmetries of the seven crystal systems in an inquiry-based manner. 2-D paper templates are provided, which the students cut out, fold, and tape together to create 3-D representations of the seven crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, and cubic. The students can then use these to determine the geometries and symmetries of the systems for themselves.

Virtual Schlenk Line

Submitted by Amanda Reig / Ursinus College on Mon, 06/24/2013 - 10:10
Description

This website provides a link to a simple downloadable program that introduces students to a Schlenk line through a series of short animations.  It is designed for Windows (does not appear to work on Windows 8 or on Macs).  While a bit rudimentary, it does a nice job of showing students the basic setup, discussing safety concerns with the liquid nitrogen trap, and outlining the general procedure for starting up and shutting down the Schlenk line.

Student Led Point Group Determinations

Submitted by John Lee / University of Tennessee Chattanooga on Tue, 06/18/2013 - 09:43
Description

All chemistry is learned best by "doing," and I believe this is especially true for determining molecular symmetry.  This activity was designed to end a three-part lecture/activity on symmetry and point groups for my advanced inorganic class.  I call this unit on symmetry a lecture/activity series because it was designed to be student-guided learning and requires the students to teach each other how to determine a molecular point group.  I only gave one formal lecture on symmetry and point groups, which was followed by the symmetry scavenger hunt activity LO.  Finally this assignment was do

Databases for Kinetics

Submitted by Adam Johnson / Harvey Mudd College on Mon, 06/03/2013 - 15:02
Description

I recently came across some web resources for teaching kinetics. They are searchable compilations of kinetics data, principally gas-phase. Two of the sites include "recommended" data for use in simulations.

I describe the four sites here and the URLs are here and below.

http://jpldataeval.jpl.nasa.gov/
This is a critical tabulation of the latest kinetic and photochemical data for use by modelers in computer simulations of atmospheric chemistry

[RuH(NO3)(CO)2(PPh3)2]: An analysis of the literature

Submitted by Chip Nataro / Lafayette College on Thu, 05/16/2013 - 18:47
Description

The original description of the synthesis of [RuH(NO3)(CO)2(PPh3)2 appears in Inorg. Chem. (Critchlow, P. B.; Robinson, S. D. Inorg. Chem. 1978, 17, 1896). There are eight possible structures for this octahedral isomer (including two sets of enantiomers). Students are shown one of the structures and asked to draw the remaining seven. The authors analyze the spectroscopic data obtained for the compound in order to determine which isomer formed. Unfortunately, there was an error in the analysis.

A DFT Study of Metal Pentacarbonyls

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Thu, 05/09/2013 - 16:57
Description

Metal carbonyls are the most widely studied organometallic complexes.  This exercise uses Gaussian with the GaussView interface to investigate the role of the metal centers on backbonding to the CO ligand. Density Functional Theory (DFT) methods were used to evaluate two classic metal pentacarbonyls, namely Fe(CO)5 and Ru(CO)5.