5 (or 6) Slides about Biophysical Techniques
This Five Slides About was prepared specifically for the 2014 IONiC/VIPEr workshop Bioinorganic Applications of Coordination Chemistry held at Northwestern University July 13-18, 2014.
This Five Slides About was prepared specifically for the 2014 IONiC/VIPEr workshop Bioinorganic Applications of Coordination Chemistry held at Northwestern University July 13-18, 2014.
Anne asked the students in her junior/senior inorganic course to develop their own literature discussion learning objects and lead the rest of the class in a discussion of their article. Each student chose one article from a list of suggestions provided. Student Hayley Johnston chose this article describing a Mn-containing catalyst for carbon dioxide reduction (Jonathan M. Smieja, Matthew D. Sampson, Kyle A. Grice, Eric E. Benson, Jesse D. Froehlich, and Clifford P.
This set of slides is adapted from a presentation given at the ACS National Meeting in New Orleans Spring 2013 in the symposium "Undergraduate Research at the Frontiers of Inorganic Chemistry" organized by members of the VIPEr leadership council. The slides are from the introduction to the presentation that takes the audience through how catalytic cycles are depicted and then to the concept of concurrent tandem catalysis (CTC). At the end, there is a slide with references that gives an example of how CTC can be applied to aryl halide substrates to form new C-C and C-H bonds.
In this literature discussion, students are asked to read an article describing a series of uranyl halide compounds that contain an alkali counterion that interacts with one or more of the uranium's ligand atoms. This paper stands out as a great example of the binding preferences of acids and bases, and can be explained very well using simple HSAB concepts.
This collection highlights the learning objects used at the 2014 VIPEr workshop on the Bioinorganic Applications of Coordination Chemistry to introduce participants to the field of bioinorganic chemistry. They provide essential background information on how metals bind to proteins as well as the techniques used in the research papers presented at the workshop. A list of learning objects created at the workshop based on the current research of our expert speakers can be found at:
This is a literature discussion based on a paper titled “Generation and Structural Characterization of a Gold(III) Alkene Complex” (Angew. Chem. Int. Ed. 2013, 52, 1660 - DOI 10.1002/anie.201209140) that reports the first crystallographically characterized Au(III) alkene complex, [(cod)AuMe2] [BArF]. The synthesis and characterization of [(cod)AuMe2] [BArF] are presented. The structural properties are compared to those of the isoelectronic species (cod)PtMe2, and to free cod.
These slides provide an outline of the significance, bonding, properties, and reactivity of metal alkene, alkyne, and diene complexes appropriate for an upper division organometallics class. Animation is used to construct qualitative MO diagrams for olefins bound to octahedral metal centers that highlight specific bonding and antibonding interactions.
The chemdraw file used to create these slides is also provided.
This in class activity is designed to introduce students to how amino acid side chains can coordinate metal ions in proteins. It guides students through the exploration of several metal binding sites in proteins using the Ligand Explorer program on the Protein Data Bank (PDB) website. Essentially, it is a way for them to use the PDB to “discover” the information generally presented on this topic in the introductory chapters of bioinorganic textbooks. At the end it asks students to think about Hard Soft Acid Base theory and to see how that can be applied to the binding of metals in protei
The in-class game Jablinko was designed to make learning excited state transitions fun. To play, a student chooses an excited state by placing a game chip at the top of the board, then the chip can “vibrationally cool” by bouncing through the pegs, and finally “transition” to a lower energy state in the bottom row. The students then compete to be the first to name the transition (e.g. S1 to T1 is called intersystem crossing).
This is a 90 minute talk by Fraser Armstrong of Oxford University (http://armstrong.chem.ox.ac.uk) explaining the electrochemistry of proteins immobilized on surfaces. The talk was presented at the 3rd Bioinorganic Workshop in 2014 at Pennsylvania State University. The talk contains an excellent basic tutorial on simple electron transfer on immobilized substrates using simple iron sulfur proteins as the primary example.