Introduction to Drago's ECW Acid-Base Model
In this in-class activity, each student calculates the inital pH, equivalence volume, and pH at the equivalence point for both a strong acid-strong base and a weak acid-strong base titration.
In addition, each student is assigned a unique volume before the equivalence point and a unique volume after the equivalence point for each titration curve.
The data from the class is then assembled in Excel to construct the two titration curves.
This literature discussion explores the physical structures, electronic structures, and spectroscopic characterization of several porphyrin-based metal-organic frameworks through discussion of “Iron and Porphyrin Metal−Organic Frameworks: Insight into Structural Diversity, Stability, and Porosity,” Fateeva et al. Cryst. Growth Des. 2015, 15, 1819-1826, http://dx.doi.org/doi:10.1021/cg501855k.
Students read two review articles and one research article on platinum-based cancer therapeutic agents. These articles compresentively discuss various aspects of these drug agents such as discovery, synthesis, mode of function. Students read the articles and use the knowledge on coordination chemistry (structure, reactivity, bonding, etc.) to explain the information included in the articles.
References:
From syllabus:
This is a collection of LOs that I used to teach a junior-senior seminar course on organometallics during Fall 2018 at Harvey Mudd College. There were a total of 9 students in the course. The Junior student (there was only one this year) was taking 2nd semester organic concurrently and had not takein inorganic (as is typical).
This set of questions is based on a single figure from Rountree et al. Inorg. Chem. 2019, 58, 6647. In this article (“Decoding Proton-Coupled Electron Transfer with Potential-pKa Diagrams”), Jillian Dempsey’s group from the University of North Carolina examined the mechanism by which a nickel-containing catalyst brings about the reduction of H+ to form H2 in non-aqueous solvent.
This experiment tasks students with preparing triphenylphosphine sulfide, and the corresponding I2 adduct, then characterizing these products using common instrumental methods. Students are asked to consider MOs and tie this to their Lewis bonding depiction for the final product. This discussion is supported by WebMO calculations and tied to the experimental data obtained by the student.