Triphenylphosphine: Transformations of a Common Ligand

Submitted by Brad Wile / Ohio Northern University on Sun, 06/09/2019 - 11:42
Description

This experiment tasks students with preparing triphenylphosphine sulfide, and the corresponding I2 adduct, then characterizing these products using common instrumental methods. Students are asked to consider MOs and tie this to their Lewis bonding depiction for the final product. This discussion is supported by WebMO calculations and tied to the experimental data obtained by the student.

Inorganic Chemistry

Submitted by Kevin Hoke / Berry College on Sun, 06/09/2019 - 09:39
Description

Theoretical and descriptive inorganic/bioinorganic chemistry. Examines molecular structure and other properties of crystals, coordination compounds, and organometallic compounds. Topics include the roles of metal complexes as acids and bases, in oxidation-reduction reactions, and in biochemical systems. Laboratory in which main group and transition metal compounds are synthesized and studied. This course counts towards the Writing Across the Curriculum requirement.

Inorganic Chemistry

Submitted by Craig M. Davis / Xavier University on Sun, 06/09/2019 - 09:09
Description

Modern theories of bonding and structure, spectroscopy, redox chemistry, and reaction mechanisms. Coordination compounds, organometallic clusters, and catalysis.

Inorganic Chemistry I

Submitted by Todsapon T. / University of Evansville on Sun, 06/09/2019 - 08:54
Description

Surveys classical and contemporary approaches to the study of coordination compounds, solid-state chemistry and the chemistry of elements based on groups in the periodic table.

Principles of Chemistry II

Submitted by Michelle Personick / Wesleyan University on Sun, 06/09/2019 - 08:54
Description

This second semester general chemistry course is a continuation of the Principles of Chemistry sequence that is recommended for science students. The focus of the course is the fundamentals of structure and bonding, with an emphasis on predicting reactivity.

Inorganic Chemistry & Lab

Submitted by Eric Eitrheim / University of Central Oklahoma on Sun, 06/09/2019 - 08:50
Description

CHEM 4654 (CRN: 10411) and the accompanying lab (CHEM 4654L) is worth 4 credit hours. CHEM 4654 covers atomic theory and spectroscopy, periodic properties, descriptive chemistry, inorganic structure and bonding, coordination chemistry, organometallic chemistry, symmetry and group theory.  Students must be concurrently enrolled in CHEM 4654L (CRN: 10412).

Crystallographic Resources at Otterbein University

Submitted by Kevin Hoke / Berry College on Sat, 06/08/2019 - 22:44
Description

This site is another excellent resource from Dean Johnston (see also his Symmetry resource).

Important Note: Part of this web resource has recently been replaced by a new site with a new URL. The previous version used JSmol and had some quirks with ion sizes, but this complete revision addresses those and has a much more robust "tutorial" style for students to work through solid state structural types.

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sat, 06/08/2019 - 16:41

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

Guideline for drawing chemical structures

Submitted by Brad Wile / Ohio Northern University on Fri, 06/07/2019 - 17:14
Description

This is the set of guidelines provided for authors by Nature Research. A 6-page PDF gives explicit guidance about rendering molecules using chemical drawing software, and a downloable ChemDraw template (.cds) is provided.