Free Energy of Activation & Reaction Completion Times

Submitted by Joanna Webb / West Virginia Wesleyan College on Thu, 02/17/2022 - 13:39
Description

This spreadsheet uses the Eyring equation to draw a connection between activation barriers and the timescale of a reaction. Students input a free energy of activation and can quickly see how long a reaction will take at varying temperatures. This has been particularly useful in computational sections of literature articles that investigate possible mechanistic pathways.

VIPEr nanoCHAt : NeWBiEs Spring 2022 Learning Objects

Submitted by Shirley Lin / United States Naval Academy on Wed, 02/02/2022 - 18:07

This collection accompanies the IONiC VIPEr nanoCHAt video series NeWBiEs, recorded in Spring 2022. This series is comprised of weekly conversations with two IONiC members, Wes Farrell and Shirley Lin from the US Naval Academy, as they taught a foundation-level inorganic chemistry course for the first time. The LOs discussed in the videos are included in this collection.

Inorganic Chemistry

Submitted by Jason Smee / University of Texas at Tyler on Wed, 01/19/2022 - 16:07
Description

Introductory topics in inorganic chemistry including descriptive inorganic chemistry, solid-state chemistry, and coordination chemistry with the latter area consisting of nomenclature, stereochemistry, bonding, and reaction mechanisms. 

Essential Inorganic Chemistry

Submitted by David Benson / Calvin University on Tue, 01/18/2022 - 19:10
Description

Course Description: This foundational course for 2nd-year students covers the properties and trends of molecules derived from across the periodic table. In addition to main-group elements, a deeper understanding of transition metal ions will be developed. Topics covered include periodicity, bonding, symmetry, and reactivity.

Descriptive Inorganic Chemistry

Submitted by Kim Woznack / PennWest-California on Fri, 01/14/2022 - 12:48
Description

This course focuses on the concepts of inorganic chemistry with emphasis on atomic structure, periodicity, group and bonding theories, symmetry, solid-state structures of metals, ionic compounds and semiconductors, as well as transition metal coordination chemistry.   

Inorganic Chemistry

Submitted by Laurel Goj Habgood / Rollins College on Mon, 01/10/2022 - 16:45
Description

The course is currently designed for a student population impacted by COVID and College policies that the department offer this course every third semester. This semester I have a diverse student population in terms of developmental levels including cohort year (freshman, junior, senior), prior foundational course work (biochemistry, analytical, physical), and research experience. I have altered the assessment part of the course substantively from prior iterations and reduced topic coverage to provide flexibility.

Inorganic Chemistry 1

Submitted by Stephanie Poland / Rose-Hulman Institute of Technology on Mon, 01/10/2022 - 10:16
Description

Course catalog description: The chemistry of non-metals. This course consists of a systematic study of the properties and reactions of the elements and their compounds based upon modern theories of the chemical bond, as well as from the viewpoint of atomic structure and the periodic law.

Analysis of an Inorganic Chemistry Literature Article

Submitted by Catherine McCusker / East Tennessee State University on Wed, 01/05/2022 - 14:17
Description

In this assignment students search for and choose an inorganic chemistry related research article. After reading, students write an analysis of their article, explaining the background, experimental data, and conclusions to their classmates.