Inorganic Chemistry

Submitted by Jennifer Young / Azusa Pacific University on Tue, 06/28/2022 - 17:57
Description

This course lays a foundation in the subjects of atomic structure, bonding theory, symmetry theory, and acid-base chemistry, which is then used to explore advanced topics involving crystalline compounds, coordination compounds, and organometallic compounds. Topics include bonding, spectroscopy, and kinetics.

Organometallic Chemistry

Submitted by Laina Geary / University of Nevada, Reno on Tue, 06/28/2022 - 17:51
Description

The goal of this course is to provide an in-depth introduction to the broad subject of organometallic chemistry. Selected topics include: main group organometallics, oxidation states, ligands, structure and bonding, mechanism and mechanistic analysis, cross coupling, hydrogenation, hydroformylation, olefin polymerization, olefin metathesis, and other applications in homogeneous catalysis and organic synthesis.

Nuclear and Radiochemistry

Submitted by S Hurst / Northern Arizona University on Tue, 06/28/2022 - 17:37
Description

This course (CHM 599) offers a brief introduction to the study of Nuclear Chemistry, one of the key areas of chemistry. Success in this course requires mastery of chemical vocabulary, principles, and concepts as stated in the degree program’s learning outcomes. In CHM 599, students learn how nucleons interact within the nucleus, half-lives, decay pathways and mechanisms, and nuclear cross-sections and understand the importance of the sub-atomic particles in the nucleus.

Elements Blog Project

Submitted by Emma Downs / Fitchburg State University on Tue, 06/28/2022 - 16:30
Description

Relating Ligand Field Theory to Nickel Complex Color

Submitted by Joya Cooley / California State University, Fullerton on Tue, 06/28/2022 - 14:55
Description

This In-Class Activity is meant to follow up discussions of ligand field theory toward the end of MO theory including the effects of sigma donors, pi donors, and pi acceptors, and how it relates to absorption spectra and observed color of some transition metal complexes. Students have learned crystal field theory and the effects of geometry/symmetry on ∆, then we extend to LFT and how the chemistries of different ligands affect ∆.

Advanced Inorganic Chemistry

Submitted by Matthew Bork / Rockford University on Mon, 06/27/2022 - 16:50
Description

CHEM 405 Advanced Inorganic Chemistry – 4 Credit Hours

Lattice Structures Visualizer

Submitted by Stephanie Poland / Rose-Hulman Institute of Technology on Sun, 06/26/2022 - 14:33
Description

This Lattice Structures Visualizer is useful to see simple cubic, body-centered cubic, face-centered cubic, NaCl, CaF2, and hcp lattice structures. You can add atoms/ions layer by layer, break them apart into individual unit cells, and perform other modifications to better observe the structures without physical models. I use this routinely in my general and inorganic chemistry classes.

VIPEr Fellows 2022 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sun, 06/26/2022 - 14:31

The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.