exp_123 (2)

Table 1 Crystal data and structure refinement for exp_123 (2).
Identification code exp_123 (2)
Empirical formula C10H38ClCoN6O11
Formula weight 512.84
Temperature/K 293(2)
Crystal system triclinic
Space group P1
a/Å 8.1448(2)
b/Å 8.2664(3)
c/Å 8.4973(3)
α/° 102.314(3)
β/° 101.136(2)
γ/° 95.278(2)
Volume/Å3 543.10(3)
Z 1
ρcalcg/cm3 1.568
μ/mm‑1 0.976
F(000) 272.0
Crystal size/mm3 ? × ? × ?
Radiation MoKα (λ = 0.71073)
2Θ range for data collection/° 5.148 to 52.74
Index ranges -11 ≤ h ≤ 11, -11 ≤ k ≤ 11, -12 ≤ l ≤ 12
Reflections collected 28324
Independent reflections 4391 [Rint = 0.0236, Rsigma = 0.0136]
Data/restraints/parameters 4391/3/280
Goodness-of-fit on F2 1.049
Final R indexes [I>=2σ (I)] R1 = 0.0178, wR2 = 0.0464
Final R indexes [all data] R1 = 0.0179, wR2 = 0.0464
Largest diff. peak/hole / e Å-3 0.33/-0.20
Flack parameter-0.012(3)

 

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for exp_123 (2). Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.
AtomxyzU(eq)
Co17314.4(2)4745.2(2)1675.8(2)17.33(9)
N67235(3)7166(3)1979(3)25.5(4)
N37218(3)2340(3)1550(3)26.4(5)
N44853(3)4354(3)1404(3)25.1(4)
N17103(3)4418(3)-714(3)26.2(5)
N57712(3)5193(3)4089(3)25.1(4)
N29764(3)4994(3)1821(3)28.0(5)
C18793(3)4851(4)-1065(3)34.0(5)
C67268(4)7948(3)3726(3)33.4(5)
C58295(4)7011(3)4794(3)32.4(5)
C210095(3)4323(4)164(3)35.0(6)
C35594(3)1718(3)1888(3)32.8(5)
C44257(3)2519(3)974(4)38.4(6)
O23798(3)5907(3)4353(3)49.5(6)
O45668(2)7404(2)8539(2)30.6(4)
O33138(2)4553(2)7918(2)29.3(4)
O53668(3)7726(2)10749(2)36.0(4)
O15016(2)4096(2)5593(3)37.5(4)
O61578(3)8335(3)8956(2)42.0(5)
C83112(3)5693(3)6883(3)22.5(4)
C74049(3)5171(3)5502(3)27.3(5)
C102988(3)7875(3)9352(3)24.8(4)
C93914(3)7422(3)7941(3)22.5(4)
O94229(4)931(3)5964(4)68.7(8)
O82154(3)8279(3)3422(3)47.7(5)
O7-429(3)9540(3)11055(3)45.2(5)
O1110109(3)673(3)7467(3)54.4(6)
O106924(3)441(3)8043(2)37.9(4)
Cl110394.5(9)2431.7(8)4534.8(9)43.95(18)

 

Table 3 Anisotropic Displacement Parameters (Å2×103) for exp_123 (2). The Anisotropic displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…].
AtomU11U22U33U23U13U12
Co116.45(13)17.76(13)17.37(13)3.47(8)3.16(8)3.11(8)
N626.2(11)24.3(10)25.7(10)6.7(8)3.9(8)3.3(8)
N329.1(12)22.7(10)25.5(10)2.4(8)4.2(9)6.3(8)
N422.0(11)30.1(11)24.7(10)7.5(9)6.8(8)5.9(9)
N125.8(11)29.2(11)23.4(10)6.0(8)4.4(8)5.9(8)
N525.6(11)28.3(11)21.8(10)5.0(8)6.0(8)5.6(8)
N222.0(12)32.7(12)28.3(12)5.4(9)4.4(9)4.5(9)
C134.0(13)43.6(14)28.5(12)10.0(10)14.8(10)5.3(11)
C641.7(14)24.0(11)33.6(13)0.3(10)11.5(11)8.8(10)
C538.4(14)29.7(12)22.5(11)-2.4(9)1.9(10)1.7(10)
C224.7(12)48.3(15)34.0(13)6.8(11)13.0(10)8.1(11)
C335.2(13)23.4(11)39.6(13)8.1(10)9.6(11)-1.5(9)
C426.4(13)33.5(13)51.6(16)9.1(12)3.9(11)-3.1(10)
O281.3(16)52.9(12)35.1(10)25.3(9)34.8(11)33.8(12)
O421.3(8)30.4(9)41.5(9)15.0(7)3.9(7)1.4(6)
O340.0(10)25.1(8)21.2(8)5.1(6)8.0(7)-5.8(7)
O543.2(11)41.5(10)22.9(8)6.6(7)7.3(7)5.8(8)
O138.4(10)37.6(10)46.5(11)15.9(8)21.3(8)16.3(8)
O640.1(11)55.6(12)39.6(10)15.1(9)18.3(8)24.9(9)
C821.4(10)29.2(11)18.3(9)6.9(8)5.8(8)5.1(8)
C733.6(13)28.4(12)24.5(11)8.2(9)13.5(10)8.7(10)
C1028.7(12)20.5(10)25.1(11)3.5(8)8.2(9)2.9(8)
C920.7(10)25.9(11)23.5(10)10.9(9)4.6(8)5.3(8)
O969.5(16)45.8(13)81.6(18)31.1(13)-22.0(14)4.7(12)
O853.2(13)52.7(13)46.5(12)18.4(10)18.3(10)23.8(10)
O735.9(10)61.3(14)39.0(11)5.6(10)13.5(9)13.0(10)
O1159.9(14)59.5(14)54.7(14)23.5(11)21.3(11)22.0(11)
O1036.7(10)39.7(10)33.3(10)7.0(8)2.2(8)1.2(8)
Cl143.8(4)33.7(3)45.2(4)8.2(3)-11.8(3)6.9(3)

 

Table 4 Bond Lengths for exp_123 (2).
AtomAtomLength/Å AtomAtomLength/Å
Co1N61.971(2) C1C21.503(4)
Co1N31.961(2) C6C51.499(4)
Co1N41.961(2) C3C41.501(4)
Co1N11.962(2) O2C71.251(3)
Co1N51.961(2) O4C91.423(3)
Co1N21.964(2) O3C81.419(3)
N6C61.482(3) O5C101.246(3)
N3C31.477(3) O1C71.245(3)
N4C41.493(4) O6C101.250(3)
N1C11.492(3) C8C71.529(3)
N5C51.490(3) C8C91.526(3)
N2C21.485(3) C10C91.535(3)

 

Table 5 Bond Angles for exp_123 (2).
AtomAtomAtomAngle/˚ AtomAtomAtomAngle/˚
N3Co1N6173.42(11) C2N2Co1109.21(16)
N3Co1N192.48(10) N1C1C2107.9(2)
N3Co1N291.68(10) N6C6C5108.27(19)
N4Co1N689.95(9) N5C5C6107.7(2)
N4Co1N385.44(10) N2C2C1107.0(2)
N4Co1N191.51(9) N3C3C4106.8(2)
N4Co1N2175.94(11) N4C4C3107.2(2)
N1Co1N692.33(9) O3C8C7112.25(18)
N1Co1N285.75(10) O3C8C9108.57(17)
N5Co1N685.50(9) C9C8C7109.86(18)
N5Co1N390.04(9) O2C7C8115.9(2)
N5Co1N492.93(9) O1C7O2124.5(2)
N5Co1N1175.05(11) O1C7C8119.6(2)
N5Co1N289.93(10) O5C10O6126.3(2)
N2Co1N693.15(10) O5C10C9118.5(2)
C6N6Co1110.46(16) O6C10C9115.2(2)
C3N3Co1108.87(16) O4C9C8109.30(17)
C4N4Co1109.77(17) O4C9C10112.01(18)
C1N1Co1109.58(17) C8C9C10108.41(17)
C5N5Co1108.91(16)     

 

Table 6 Torsion Angles for exp_123 (2).
ABCDAngle/˚ ABCDAngle/˚
Co1N6C6C532.1(3) O3C8C9O467.7(2)
Co1N3C3C442.5(2) O3C8C9C10-54.7(2)
Co1N4C4C335.2(3) O5C10C9O4-19.1(3)
Co1N1C1C235.7(2) O5C10C9C8101.6(2)
Co1N5C5C640.7(2) O6C10C9O4162.3(2)
Co1N2C2C140.2(2) O6C10C9C8-77.1(2)
N6C6C5N5-47.3(3) C7C8C9O4-55.4(2)
N3C3C4N4-50.4(3) C7C8C9C10-177.80(19)
N1C1C2N2-49.3(3) C9C8C7O2-73.0(3)
O3C8C7O2166.1(2) C9C8C7O1105.5(3)
O3C8C7O1-15.4(3)      

 

Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for exp_123 (2).
AtomxyzU(eq)
H6A81167638168031
H6B62977336133731
H3A7305180454932
H3B80722155228732
H4A45704834233730
H4B4360480960730
H1A66963359-121631
H1B63875065-110131
H5A67634894439030
H5B84934601446730
H2A101986069218134
H2B102524441253434
H1C90226045-96741
H1D88214275-217941
H6C61277901390940
H6D77679112399640
H5C94857267481039
H5D81387328591639
H2C100043113-6842
H2D11223476811342
H3C56322019306339
H3D5358511150839
H4C40882072-20646
H4D31952303129946
H462058273848746
H326813625736844
H819345747638627
H937798241726127
H9A37053515020103
H9B441019515926103
H8A26208417263872
H8B26647625392872
H7A11199761203968
H7B26492531045268
H11A10265898657282
H11B10771-8773782
H10A7866371776157
H10B6211653726857

Experimental

Single crystals of C10H38ClCoN6O11 [exp_123 (2)] were []. A suitable crystal was selected and [] on a diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

  1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

Crystal structure determination of [exp_123 (2)]

Crystal Data for C10H38ClCoN6O11 (=512.84 g/mol): triclinic, space group P1 (no. 1), a = 8.1448(2) Å, b = 8.2664(3) Å, c = 8.4973(3) Å, α = 102.314(3)°, β = 101.136(2)°, γ = 95.278(2)°, = 543.10(3) Å3, Z = 1, T = 293(2) K, μ(MoKα) = 0.976 mm-1, Dcalc = 1.568 g/cm3, 28324 reflections measured (5.148° ≤ 2Θ ≤ 52.74°), 4391 unique (Rint = 0.0236, Rsigma = 0.0136) which were used in all calculations. The final R1 was 0.0178 (I > 2σ(I)) and wR2 was 0.0464 (all data).

Refinement model description

Number of restraints - 3, number of constraints - unknown.

Details:

1. Fixed Uiso
At 1.2 times of:
All C(H) groups, All C(H,H) groups, All N(H,H) groups
At 1.5 times of:
All O(H) groups, All O(H,H) groups
2.a Free rotating group:
O9(H9A,H9B), O8(H8A,H8B), O7(H7A,H7B), O11(H11A,H11B), O10(H10A,H10B)
2.b Ternary CH refined with riding coordinates:
C8(H8), C9(H9)
2.c Secondary CH2 refined with riding coordinates:
N6(H6A,H6B), N3(H3A,H3B), N4(H4A,H4B), N1(H1A,H1B), N5(H5A,H5B), N2(H2A,H2B),
C1(H1C,H1D), C6(H6C,H6D), C5(H5C,H5D), C2(H2C,H2D), C3(H3C,H3D), C4(H4C,H4D)
2.d Idealised tetrahedral OH refined as rotating group:
O4(H4), O3(H3)

This report has been created with Olex2, compiled on 2020.07.16 svn.r6f6c53a7 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.