Single	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0 \$0	Adj Scores Final
Bubbles!	20 th century German History	Entropy	Potent Potables	Equilibrium is K	A pHun Category
\$200	\$200	\$600	\$200	\$200	\$200
\$400	\$400	\$800	\$400	\$400	\$400
\$600	\$600	\$200	\$600	\$600	\$600
\$800	\$800	\$1000	\$800	\$800	\$800
\$1000	\$1000	\$400	\$1000	\$1000	\$1000

This is the grams of N₂O, nitrous oxide, in 500. mL of the gas at STP. R = 0.0821L*atm/molK

0.982 g

1 atm * 0.5 L = n * 0.0821 * 273 K

$$0.022 mol * 44 \frac{g}{mol}$$

This is the pressure of gas in an aerosol can at 475°C when its pressure is1.8 atm at 25°C. R = 0.0821 L*atm/molK

4.5 atm

From this list: CO, CO₂, CO₃ or C_2O , this is the gas such that a 707 mg sample occupies a volume of 452 mL at 63°C and 745 mmHg. R = 0.0821 $L^{*}atm/molK$ and 1atm = 760mmHg

$$\frac{0.707g}{0.016 \ mol} = 44 \frac{g}{mol} \ molar \ mass$$

This is the final volume of a bubble if it had 2.1 mL volume at the bottom of a lake at 4°C and 3.0 atm, and it rose to the water's surface, where the temperature is 25°C and the pressure is 0.95 atm. R = 0.0821 L*atm/molK

$\frac{3atm * 0.0021 L}{277 K} = nR = \frac{0.95atm * V}{298 K}$

This is the volume of dry air at 1.00 atm and 25°C required for burning 1.00 L liquid hexane (C_6H_{14} , density = 0.660 g/mL) completely, yielding carbon dioxide and water. Oxygen is 20.95% of dry air. R = 0.0821L*atm/molK

8490 L $C_6H_{14} + 19/2O_2 -> 6CO_2 + 7H_2O_2$

 $1.00 L * 0.660 \frac{g}{mL} * 1000 \frac{mL}{L} * \frac{1mol hexane}{86.2g} * \frac{19molO2}{2molhexane}$

72.7 mol 02 * $\frac{1mol air}{0.2095 mol 02}$

1.00 atm * V = 347 mol air * 0.0821 * 298 K

This is the equilibrium constant expression for the Haber-Bosch process $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

$[NH_3]^2/([N_2][H_2]^3)$

Pressurizing the container favors the formation of this side of the Haber-Bosch equilibrium $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

The right-> it has fewer moles of gas

This is the equilibrium constant for the Haber Bosch: $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$ at 57C Given that the equilibrium constant for $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ is 49.3 at 57C.

0.0203 (the reciprocal)

This is the equilibrium constant for the Haber Bosch: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

Given that: $N_2(g) + Fe(s) \rightleftharpoons FeN_2(s)$ K = 15 $FeN_2(s) + 3H_2(g) \rightleftharpoons 2NH_3(g) + Fe(s)$ K = 4

 $\begin{array}{ll} \mathsf{N}_2 \left(g \right) + \mathsf{Fe} \left(s \right) \rightleftarrows \mathsf{FeN}_2 \left(s \right) & \mathsf{K} = 15 = 1/[\mathsf{N}_2] \\ \mathsf{FeN}_2 \left(s \right) + 3\mathsf{H}_2 \left(g \right) \rightleftarrows 2\mathsf{NH}_3 \left(g \right) + \mathsf{Fe}(s) & \mathsf{K} = 4 = [\mathsf{NH}_3]^2/[\mathsf{H}_2]^3 \end{array}$

For the desired constant, multiply together

 $[NH_3]^2/([N_2][H_2]^3)$

This would be the NH₃ concentration when the Haber-Bosch process equilibrates after 1M H₂ and 1M N₂ combine at a temperature where K=2.0*10⁻¹⁰ $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$ 1 1 $\left(\right)$ -3x +2x -X **2**x 1-x 1-3x $2.0 * 10^{-10} = \frac{(2x)^2}{(1-x)(1-3x)^3} = \frac{4x^2}{1}$

But K is small!

This species has the lowest standard entropy (S°) from this list: $Br_2(I), Cl_2(g), F_2(g), H_2(g),$ $l_2(S)$

I₂(s) Solids have lowest entropy

These are the signs of H, S and G, for an exothermic reaction that is nonspontaneous at high temperatures

$\Delta H < 0, \Delta S < 0, \Delta G > 0$

This is the lowest temperature at which a reaction will be spontaneous if $\Delta S^{\circ} = 75.8$ J/K-mol and $\Delta G^\circ = 141$ kJ/mol at 25C

2160 K

$$141000 \frac{J}{mol} = H - 298K * \frac{75.8J}{Kmol}$$

 $0 = 163.6kJ/mol - T * \frac{75.8J}{Kmol}$

This is K for a reaction at 227°C with $\Delta H^\circ = 81.2$ kJ/mol and $\Delta S^\circ = 128$ J/K-mol

 $G = -8.314 * (227 + 273K) * lnK = 81,200 J/mol - (227 + 273K) * \frac{128J}{Kmol}$

$$-\frac{4157J}{mol}*\ lnK = 17200\ J/mol$$

$$K = e^{-4.137}$$

This is K_a for HCN(aq) at 25°.

ΔH° for H+, CN- and HCN are 0, 151.0 and 105.4 kJ/mol, respectively. ΔS° are 0, 117.99 and 128.9 J/molK, respectively.

2.73×10^{-9} $HCN \rightleftharpoons H^+ + CN^-$

 $H = (151 + 0) - 105.4 = 45.6 \, kJ/mol$

S = (117.99 + 0) - 128.9 = -10.91 J/molK

 $-8.314 * (298K) * lnK = 45,600J/mol - (298K) * \frac{-10.91J}{Kmol}$

Ln(K) = -19.7

A sample of gaseous ethanol, at 100 torr, would have this pressure if the container volume is doubled at constant temperature

50 torr

• P and V are inversely related.

Gaseous ethanol, at 298K and 745 torr with V=37.42L, would occupy this volume at 894 torr and 313K

- $P_1V_1/n_1T_1 = P_2V_2/n_2T_2$
- Moles are constant and cancel

- 745*37.42/298 = 894x/313
- Note the use of torr and not atm on both sides is OK.

This is the Gibbs Energy for the reaction which makes methanol: $\overline{CO}(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ Given a K = $1.4*10^{-7}$ at 1500°C

+233 kJ/mol

• G = -RTIn(K)

• = $-8.314 \text{ J/molK} * 1773 \text{ K} * \ln(1.4*10^{-7})$

This is the boiling point of pentanol given the reaction has $\Delta H = 55.5 \text{ kJ/mol}$ and $\Delta S = 148 \text{ J/mol}^*\text{K}$

102°C (375K)

• $T = \Delta H / \Delta S = 55,500/148$

This mass of methanol (32g/mol) was initially present in a 3.00L vessel which, at equilibrium, contains 0.426 M H₂ $CH_3OH (g) \rightleftharpoons CO (g) + 2H_2 (g)$ $K = 6.90^*10^{-2}$

74.3 g

 $\begin{array}{ccc} CH_{3}OH(g) \rightleftarrows CO(g) + 2H_{2}(g) \\ x & 0 & 0 \\ -y & +y & +2y \\ X-y & y(0.213) & 2y = 0.426 \end{array}$

 $6.9 * 10^{-2} = \frac{(0.426)^2 (0.213)}{(x - 0.213)}; x = 0.773 M$

0.773 mol/L * 3L * 32 g/mol

This is the correct equilibrium constant expression for the following reaction $Fe_2O_3(s) + 3H_2(g) \rightleftharpoons 2Fe(s) + 3H_2O(g)$

 $Kc = [H_2O]^3 / [H_2]^3$

This is what increasing the volume of the container would do to this equilibrium: $3Fe(s) + 4H_2O(g) \rightleftharpoons Fe_3O_4(s) + 4H_2(g),$

Cause no change Equal moles of gas on both sides of equilibrium

This is K for the equilibrium $S_2CI_4 \rightleftharpoons 2SCI_2$

When 4.21 moles of S₂Cl₄ are introduced into a 2.0 L vessel,
1.25 moles of S₂Cl₄ are found unreacted at equilibrium.

$S_2Cl_4 \rightleftharpoons$	$2SCI_2$	
l 2.105	0	X= 1.48 2X= 2.96
C -X	+2X	
E 0.625	2X	

K = 2.96^2 /0.625

This is which direction is spontaneous when $[SO_2] = 0.010 \text{ M}; [SO_3] = 10.0 \text{ M};$ $[O_2] = 0.010 \text{ M}.$

At 700 K, the equilibrium of $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ has the equilibrium constant $Kc = 4.3 \times 10^6$,

Qc > Kc, the reaction proceeds from right to left to reach equilibrium

$Q = [SO_3]^2 / [SO_2]^2 [O_2] = 10^2 / 0.01^3 = 10^8$

This is the concentration of NOCI needed in a 4.00 L reaction vessel to make 1.00 M of NOCI exist at equilibrium. $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g),$ K = 8.0.

3.52 M

$2NOCI(g) \rightleftharpoons 2NO(g) + CI_2(g),$

 $\begin{array}{ccccc} I & Y & 0 & 0 \\ C & -2X & +2X & +X \\ E & Y-2X = 1 & 2X & X \end{array}$

 $(2X)^2X/1^2 = 8$ X=1.26

Y - 2(1.26) = 1

This is the concentration of H+ in a 2.5 M HC solution

2.5 M

This is the conjugate base of HCO_3^{-} .

CO₃^{2–}

This is the OHion concentration in a 5.2 × 10⁻⁴ M HNO₃ solution

 $1.9 \times 10^{-11} M$

1*10⁻¹⁴ / (5.2*10⁻⁴)

This is the pH of a 0.080 M solution of the weak base pyridine (C_5H_5N ; $K_b =$ 1.7 x 10⁻⁹)

0.08	0	0
-X	+X	+X
0.08-x	X	X

$$1.7 * 10^{-9} = \frac{x^2}{0.08 - x}$$

 $-\log(x) = pOH$

14-pOH = pH

This is the pH of the mixture of 5.5 L sample of a 0.25 M HNO₃ solution with 1.2 L of a 0.34 M HCI solution.

Total volume = 5.5 + 1.2 = 6.7 L

Total moles = 5.5 L * 0.25 + 1.2*0.34 = 1.783

 $-\log(1.783/6.7)$

