Build-Your-Own Molecular Orbitals

Submitted by Anne Bentley / Lewis & Clark College on Fri, 02/19/2016 - 12:44
Description

This is a truly hands-on activity in which students manipulate paper cutouts of carbon atomic orbitals and oxygen group orbitals to identify combinations with identical symmetry and build the carbon dioxide molecular orbital diagram. The activity pairs well with the treatment of MO theory in Miessler, Fischer, and Tarr, Chapter 5. An optional computational modeling component can be added at the end.

Otterbein Symmetry In-Class Activity/Take home activity

Submitted by Kyle Grice / DePaul University on Mon, 01/25/2016 - 21:26
Description

This is an in-class activity I made for my students in a Junior/Senior-level one-quarter inorganic course. 

Unfortunately it was waaay too long for the 1.5 h class (i gave them about 45 min). I recommend taking this and adapting it to a take-home exercise or homework set, which is probably what I will do this coming year. 

Students used Otterbein to look at various structures, starting with low symmetry, working up to very high symmetry structures. I had them go through the "challenge" so they couldn't see the keys at first, but then go back to check their answers. 

Antibacterial Reactivity of Ag(I) Cyanoximate Complexes

Submitted by Kari Young / Centre College on Sat, 08/22/2015 - 14:09
Description

In this experiment, students will synthesize and characterize one of three Ag(I) cyanoximate complexes as potential antimicrobial agents for use in dental implants. This experiment combines simple ligand synthesis, metalation and characterization, and a biomedical application. The complexes are both air and light stable.

Peer Review - How does it work?: A literature discussion with a focus on scientific communication

Submitted by Mike Norris / University of Richmond on Thu, 07/02/2015 - 20:21
Description

This learning object is based on discussion of the literature, but it follows a paper through the peer review process.  Students first read the original submitted draft of a paper to ChemComm that looks at photochemical reduction of methyl viologen using CdSe quantum dots.  There are several important themes relating to solar energy storage and the techniques discussed, UV/vis, SEM, TEM, electrochemistry, and catalysis, can be used for students in inorganic chemistry.

Kinetics of electrocatalytic reduction of carbon dioxide by Mn catalysts containing bulky bipyridine ligands

Submitted by Kathleen Field / WGU on Thu, 07/02/2015 - 17:23
Description

This question set has students examine the kinetics of the electrocatalytic reduction of CO2 to CO described in Sampson, D.L.; Nguygen, D., Grice, K.A.; Moore, C.E.; Rheingold, A.L.; Kubiak, C.P. Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide:  Eliminating Dimerization and Altering Catalysis.  J. Am. Chem. Soc. 2014, 136, 5460-5471. 

The Messy Chemist: Separating a Solid Mixture

Submitted by Mike Norris / University of Richmond on Tue, 06/30/2015 - 14:42
Description

This lab exercise gives students a problem scenario (a mixture of 4 solids) and asks them to determine a way to separate them from each other utilizing experimentation, previous knowledge, and discussion.  Students are expected to write a standard operating procedure detailing the method they determine for the separation at the end of the lab.  A modified version of this lab was originally performed in an accelerated summer class on chemistry given to 7th, 8th, and 9th graders that were on a track for early entrance into college.  The lab was done over the c

Synthesis of Aspirin- A Lewis Acid Approach

Submitted by Kathleen Field / WGU on Mon, 06/29/2015 - 21:29
Description

This is the procedure for a Fe(III) catalyzed synthesis of aspirin, an alternative to the traditionally sulfuric acid catalyzed synthesis of aspirin.  The prep compares and contrasts the Bronsted acid catalyzed esterification reaction with a Lewis acid iron (III) catalyzed pathway.  This can be used in different courses at different levels, but is it written for a general/intro level chemistry course.    

Vibrational Modes and IR Spectra for Intro Chem

Submitted by Karen McFarlane Holman / Willamette University on Mon, 06/29/2015 - 15:14
Description

In this activity, Introductory Chemistry students are given two possible structures of sulfur dioxide, and based on an assessment of given vibrational modes, they determine which of the modes are IR active (and thus, whether the molecule is a greenhouse gas).  They compare their assessment to experimental IR absorption peaks, and the students decide which structure is valid.

Lewis Structure Challenge

Submitted by David Laviska / Seton Hall University on Mon, 06/29/2015 - 14:24
Description

This in-class activity is designed to give general chemistry students practice with drawing Lewis structures. Small groups of 3-5 students compete for points by creating hypothetical molecules that meet criteria (numbers of elements and atoms) assigned by the professor. Beginning with simple molecules, the basic challenge format calls for increasingly complex criteria in successive rounds of competition. One optional variation also allows student groups to challenge each other for bonus points.

Play-Doh Molecular Orbitals

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Mon, 02/02/2015 - 13:56
Description

This is a simple activity designed to help students visualize the interaction of atomic orbitals to form molecular orbitals.  Students construct atomic orbitals out of Play-Doh and determine whether overlap of a given pairs of atomic orbitals along the specified axis can result in a σ, π, or δ interaction or no net interaction.  I do this activity following a reading assignment and lecture on the formation of molecular orbitals from atomic orbitals that cover the various types of interactions.  Students then work in groups of 3-4 to complete the instructions described on the attached worksh