First year

20 Jun 2009
Description: 

All VIPEr learning objects are supposed to include clear student learning goals and a suggested way to assess the learning. This "five slides about" provides a brief introduction to the "Understanding by Design" or "backward design" approach to curriculum development and will help you develop your VIPEr learning object.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Faculty will

  • understand the "backward design" concept
  • learn to write learning outcomes and assessments using the verbs ("activities") and "products" provided
  • learn how a rubric can be used to discriminate students' levels of achievement
Implementation Notes: 

These slides are a quick and dirty summary of a longer hands-on faculty development workshop I do. They provide an introduction to the Understanding by Design process, help in writing learning goals, suggestions for developing assessments of student learning, and helpful hints for preparing a VIPEr learning object.

Time Required: 
15 minutes to read the slides; a lifetime to practice the skill :)
Evaluation
Evaluation Methods: 

I hope that faculty will use these slides to aid their writing of learning goals and assessments for the VIPEr site.

19 Jul 2018

Teaching Forum Posts for New Faculty

Submitted by Shirley Lin, United States Naval Academy
Evaluation Methods: 

Not applicable.

Evaluation Results: 

Not applicable.

Description: 

This web resource is a diverse list of VIPEr forum topics about teaching that may be of interest to new faculty assigned to teach general chemistry for the first time. It was created as part of a larger collection to help new faculty get started in the classroom.

Prerequisites: 
Subdiscipline: 
Corequisites: 
Course Level: 
Learning Goals: 

There are no specific learning goals since this web resource is for faculty to become familiar with some of the topics that have been discussed in the teaching forum on VIPEr. 

Implementation Notes: 

Not applicable.

Time Required: 
If a faculty member reads through all the forum topics, this could take an hour.
25 Jun 2018

Orbital Overlap and Interactions

Submitted by Jocelyn Pineda Lanorio, Illinois College
Evaluation Methods: 

Evaluation was conducted by the instructor walking around the computer lab to check progress and address the issues students had.

Evaluation Results: 

This LO was implemented once in advanced inorganic chemistry composed of 5 chemistry major students. Students clearly identified the type of orbital interactions and differentiated bonding, nonbonding, and antibonding MOs. Students commented that this is a great in-class activity before the discussion of MOs for diatomic molecules (Chapter 5 of MFT).

Description: 

This is a simple in-class activity that asks students to utilize any of the given available online orbital viewers to help them identify atomic orbital overlap and interactions. 

Learning Goals: 

Following the activity, students will be able to:

  1. draw the s, p, and d atomic orbitals using the given coordinate axes
  2. analyze the orbital interaction by looking at their symmetry and overlap (or lack of)
  3. differentiate s, p, d, and nonbonding molecular orbital

 

Equipment needs: 

Internet connection and computer

Prerequisites: 
Corequisites: 
Implementation Notes: 

This activity should be run in a computer lab.

Time Required: 
15 to 20 minutes
23 Jun 2018

Bonding in Tetrahedral Tellurate (updated and expanded)

Submitted by Jocelyn Pineda Lanorio, Illinois College
Evaluation Results: 

This LO was developed for the Summer 2018 VIPEr workshop, and has not yet been implemented. Results will be updated after implementation.

Description: 

This literature discussion is an expansion of a previous LO (https://www.ionicviper.org/literature-discussion/tetrahedral-tellurate) and based on  a 2008 Inorganic Chemistry article http://dx.doi.org/10.1021/ic701578p

Corequisites: 
Prerequisites: 
Learning Goals: 

Upon completion of this activity, students will be able to:

  1. Identify the key aspects of a primary publication including significance, synthetic methods, and product characterization.
  1. Identify isoelectronic species by drawing Lewis Structures.  
  1. Apply standard NMR shielding/deshielding concepts to interpret heteronuclear NMR spectra.
  1. Identify experimental protocols and reaction conditions.
  1. Discuss how the various experimental methods in the article provide evidence of the structure of the compound.
  1. Recognize scientific nomenclature relevant to the research article.
  1. Identify the relationship of telluric acid and tellurate to the related species given in the paper based on periodic trends. (Periodic Acid - isoelectronic; Sulfuric and Selenic acid - same column)
  1. Compare bond lengths for species in the paper.
  1. Identify the point group of the TeO42- with all the same Te-O bond lengths and when with different Te-O bond lengths.
  1. Predict the product(s) and by-products of a chemical reaction.
  1. Identify species and intermolecular interactions in a crystal structure.

 

Related activities: 
Implementation Notes: 

Students are asked to read the paper and answer the discussion questions before coming to class. 

Time Required: 
50 +
22 Jun 2018
Evaluation Methods: 

An answer key is included for faculty.

Evaluation Results: 

This LO was developed for the summer 2018 VIPEr workshop, and has not yet been implemented.  Results will be updated after implementation.

Description: 

This acitivty is a foundation level discussion of the Nicolai Lehnert paper, "Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases".  Its focus lies in discussing MO theory as it relates to Lewis structures, as well as an analysis of the strucutre of a literature paper.

Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

Upon completion of this activity, students will be able to:

  1. Write a balanced half reaction for the conversion of NO to N2O and analyze a reaction in terms of bonds broken and bonds formed.

  2. Evaluate the structures of metal complexes to identify coordination number, geometry (reasonable suggestion), ligand denticity, and d-electron count in free FeII/FeIII centers.

  3. Recognize spin multiplicity of metal centers and ligand fragments in a complex.

  4. Interpret a reaction pathway and compare the energy requirements for each step in the reaction.

  5. Draw multiple possible Lewis Structures and use formal charges to determine the best structure.

  6. Draw molecular orbital diagrams for diatomic molecules.

  7. Identify the differences in bonding theories (Lewis vs MO), and be able to discuss the strengths and weaknesses of each.

  8. Interpret calculated MO images as σ or π bonds.

  9. Identify bond covalency by interpreting molecular orbital diagrams and data.

  10. Define key technical terms used in an article.

  11. Analyze the structure of a well written abstract.

  12. Identify the overall research goal(s) of the paper.

  13. Discuss the purposes of the different sections of a scientific paper.

Implementation Notes: 

The paper in which this discussion is centered around is very rich in concepts, and will take time for students to digest.  As the technical level is higher than most foundation level course, it is strongly recommended that students focus on the structure of the paper, and not the read the entire paper.  The discussion is modular with focuses on both MO theory drawn form the paper, as well as a general anatomy of how literature papers are organized and what constitutes a good abstract.  Either focus could take a single 50 minute lecture, with two being necessary to complete both aspects.  Instructors can choose either focus, or both depending on their course learning goals.

This was developed during the 2018 VIPEr workshop and has not yet been implemented.  The above instructions are a guide and any feedback is welcome and appreciated!

Time Required: 
One or two 50 minute lectures depending on instructor's desired focus
22 Jun 2018
Evaluation Methods: 

Discuss students responses with respect to the answer key.

Evaluation Results: 

This activty was developed for the IONiC VIPEr summer 2018 workshop, and has not yet been implemented.

Description: 

Inorganic chemists often use IR spectroscopy to evaluate bond order of ligands, and as a means of determining the electronic properties of metal fragments.  Students can often be confused over what shifts in IR frequencies imply, and how to properly evaluate the information that IR spectroscopy provides in compound characterization.  In this class activity, students are initially introduced to IR stretches using simple spring-mass systems. They are then asked to translate these visible models to molecular systems (NO in particular), and predict and calculate how these stretches change with mass (isotope effects, 14N vs 15N).  Students are then asked to identify the IR stretch of a related molecule, N2O, and predict whether the stretch provided is the new N≡N triple bond or a highly shifted N-O single bond stretch.  Students are lastly asked to generalize how stretching frequencies and bond orders are related based on their results.

 
Learning Goals: 
  1. Evaluate the effect of changes in mass on a harmonic oscillator by assembling and observing a simple spring-mass system (Q1 and 2)

  2. Apply these mass-frequency observations to NO and predict IR isotopic shift (14N vs. 15N) (Q3 and 4)

  3. Predict the identity of the diagnostic IR stretches in small inorganic molecules. (Q5, 6, and 7)

Equipment needs: 

Springs, rings, stands, and masses (100 and 200 gram weights for example).

 

Corequisites: 
Implementation Notes: 

Assemble students into small groups discussions to answer the questions to the activity and collaborate.

 

 

Time Required: 
Approximately 50 minutes
8 May 2018

Developing Effective Lab Report Abstracts based on Literature Examples

Submitted by Katherine Nicole Crowder, University of Mary Washington
Evaluation Methods: 

I use a rubric that I have developed (see attached).

They are graded out of 50 points: 5 points per category on the rubric.

Evaluation Results: 

Most students score between 40-49 on this assignment. They mostly lose points for grammar, including things that they shouldn't (which hits them in two categories - conciseness and only relevant information included), and forgetting to write a title.

Description: 

For inorganic lab, I have my students write their lab reports in the style of the journal Inorganic Chemistry. The first week of lab, we spend time in small groups looking at several examples of recent articles from Inorganic Chemistry, focusing mainly on the experimental section and the abstract (as these are included in every lab report). We then come back together as a class to have a discussion of each of the sections in the articles. We discuss what was included in each section, what wasn’t included, and the style, tone, tense, and voice of each section. I keep a running list of what we discuss to post on our CMS. It is a great opportunity to discuss the expectations for lab reports for this course (and they feel like they have a say in what they will be expected to include), and it is also a time to highlight what may be done slightly differently in inorganic versus some of the other sub-disciplines.

Following this discussion, I provide them with another current article from Inorganic Chemistry, except this time I have removed the abstract and all identifying information (authors, title, volume, page numbers, etc.) using editing (white boxes over the information) in pdf. Their assignment is to read through the article and then write their own title and abstract, keeping in mind the elements of our discussion as they write.

Since this is very early in the semester, I try to choose an interesting article that won’t be completely over their head. I also stress that they don’t have to completely understand the results to write about them, as they are usually summarized nicely in the conclusions section. Since I expect them to focus mainly on their results in their lab report abstracts, I try to choose articles that have a lot of numerical and spectral data to incorporate.

This year I chose

Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis

Ian G. McKendry, Akila C. Thenuwara, Samantha L. Shumlas, Haowei Peng, Yaroslav V. Aulin, Parameswara Rao Chinnam, Eric Borguet, Daniel R. Strongin, and Michael J. Zdilla

Inorganic Chemistry 2018 57 (2), 557-564

DOI: 10.1021/acs.inorgchem.7b01592

The students are evaluated based on their inclusion of the aspects of abstracts that we discussed, their summarization of the main findings of the article, and their grammar.

Corequisites: 
Prerequisites: 
Learning Goals: 

A student should be able to:

  • Identify common aspects of sections of literature article examples, namely the abstract and experimental section
  • Read a current literature article from Inorganic Chemistry and identify the main findings in order to write their own abstract for the article
  • Use these experiences to guide their writing for lab reports for the inorganic lab course
Equipment needs: 

None.

Implementation Notes: 

I bring 3-4 examples of articles that have abstracts that incorporate elements that I want them to include in their lab report abstracts. I bring 3-4 examples of articles that are mainly synthetic for their experimental sections, as that is what their labs will be mostly. I post these examples to our CMS after lab.

I split students into groups of 3-4 to look over the articles, then we come back together as whole class for the discussion. It is interesting to see what the different groups pick up on.

I bring my tablet to take notes on during the discussion, then post that on the CMS as well.

I have posted the discussion summary from this spring.

Links to the article I used for the abstract writing assignment and the articles I used for the in-class discussion are below.

Time Required: 
30-45 minutes
18 Apr 2018

A use for organic textbooks

Submitted by Chip Nataro, Lafayette College
Description: 

This morning before class I was picking on one of my students for having her organic chemistry textbook out on her desk. I believe I said something along the lines of 'how dare you contaminate my classroom with that!' She explained how she had an exam today and I let it drop. That is until later in the class when I was teaching about chelates. I had a sudden inspiration. I asked the student to pick up her organic book with one hand. I then warned her that I was going to smack the book. I did and she dropped it. Based on the size of most organic textbooks, I believe that very few people would be able to hold on to one with one hand while it is being smacked. I then handed her back the book and asked her to hold it with two hands while I smacked it. Sure enough, she was able to maintain her grasp of the book. I think this rather simple deomonstration did a surprisingly good job of driving home the point.

Learning Goals: 

From this in-class activity students will develop a simple appreciation for the chelate effect.

Corequisites: 
Prerequisites: 
Topics Covered: 
Course Level: 
Equipment needs: 

Organic (or p-chem) textbook

22 Jan 2018

Streamlining Lab Report Grading: Errors Checklists

Submitted by Sabrina G. Sobel, Hofstra University
Evaluation Methods: 

Errors Checklists are most effective when you list the most common errors with explanations. You will see if you are successful if you use the items on the checklist repeatedly in your grading. Students will better understand their grades because of the clear communication of their errors. You should see a reduction of student inquiries as to why a certain grade was assigned on lab work.

Evaluation Results: 

My students really appreciate the errors checklists because my expectations and my grading choices are made clear. I have found that the formulation of Errors Checklists cause me to focus on and articulate the most common students errors; I subsequently pay more attention to the items in my pre-lab lectures, and student misunderstanding has decreased.

Description: 

I present a format for more effective communiction of errors in lab reports to students that I term Errors Checklists. Grading lab reports are one of the banes of our existence as professors. They are endless, unremitting papers that need to be scrutinized for accuracy, precision and understanding. Instead of tearing your hair out at the fifteenth report in which the student failed to use to proper number of significant figures, or failed to produce a readable graph, why not just breezily check a box on your Errors Checklist (in which you have provided a complete and thoughtful explanation), and staple to the student report?

I have created and used Errors Checklists for General Chemistry and Foundations of Inorganic Chemistry lab classes for almost two decades. I have passed them on to junior colleagues in my department, which they have modified to suit their needs. Errors Checklists lower my anxiety and anger when grading multiple lab reports, and provide clearer communication with students.

Corequisites: 
Prerequisites: 
Topics Covered: 
Learning Goals: 

1. More effective communication of student errors on lab reports.

2. Streamline lab report grading to enable quick turnaround to students.

3. Better communicate expectations on lab reports to enable students to improve performance during the semester.

Equipment needs: 

None.

Implementation Notes: 

You need to develop your own Errors Checklists customized for the experiments in your curriculum. A template is provided. I have included two example checklists; the first is for a Chemical Kinetics lab in which students determine the orders WRT iodide and peroxide for the iodine clock reaction. The second is for the synthesis of potassium alum from aluminum foil, with supplemental analysis of the unit cell (available online).

Time Required: 
not applicable
19 Dec 2017

Visual scaffold for stoichiometry

Submitted by Margaret Scheuermann, Western Washington University
Description: 

These five slides are intended to share a visual scaffolding that I developed to help my general chemistry students identify what calculations are needed to solve stoichiometry problems.

 

The visual scaffold involves writing the balanced equation and then under it drawing a table with two rows and enough columns so that there is one column under each reagent in the equation. The top row is labeled as "moles" and the bottom row is labeled as "measurable quantity". Students then write in any information about a specific reagent or product that was given and identify the quantity that the question is asking them to find. They then add a series of arrows to the table to generate a "map" of how to get from the information they are given to the information they need to find with each arrow representating a type of calculation that they have already seen and practiced. Vertical arrows represent a calculation between a measured quantity and a number of moles. Horizontal arrows in the top row represent calculations between moles of one substance and moles of another substance. Horziontal arrows in the "measured quantity" row are not allowed since those unit conversion factors are not readily available. 

 

Corequisites: 
Topics Covered: 
Prerequisites: 
Course Level: 
Learning Goals: 

A student should be able to determine the quantity of a reagent required or the quantity of a product produced in a reaction.

Subdiscipline: 
Related activities: 
Implementation Notes: 

The scaffolding begins with a review of the two types of calculations that are required for basic stoichiometry: converting between grams and moles, and converting between moles of one substance and moles of another substance using the coefficients of a balanced equation as unit conversion factors (slide 1).

Some ABCD card/clicker questions can be added here if students have not practiced these types of problems in class recently.

After introducing the visual scaffold (slide 2) I do an example problem or two on the board/overhead/doc cam (slide 3).

This is a good point to give students an opportunity to work on a practice problem or if the introduction to stoichiometry began part way through a class period, an exit question.

Next I introduce situations where it could take more than one calculation to get from the measured quantity to moles (slide 4). 

An example problem and/or practice problem and/or exit question can be added here.

The visual scaffold is also relevant for limiting reagent problems. I've included an example (slide 5/6) but limiting reagent is usually presented in a subsequent class period after some examples of the limiting reagent concept using sandwiches or something similar. 

Time Required: 
30-50 minutes. varies with the number of examples and practice problems
Evaluation
Evaluation Methods: 

I will usually do an exit question- a stoichiometry problem from the textbook- after either slide 3 or slide 4. I do not require students to use the visual scaffold if they are already comfortable with stoichiometry from a previous class but many choose to use it. Some students will include the tables from the visual scaffold as part of the work they show on exams, again without being prompted or required to do so. 

Pages

Subscribe to RSS - First year