
In this notebook we will examine the Eyring equation.Specifically, how to fit data to the Eyring equation properly. The Eyring

equation is k =
kb

h
T e

-D G

R T , where D G= D H- T D S.

Let' s take a look at a system with theoretical parameters D H = 75 kJ/mol and D S = -15
J/(mol K).We' ll do a couple simulated "experiments" (with error) and see how different fitting strategies work.While looking at
this, remember that a good fitting strategy will produce fitting parameters close to the theoretical values.

In[69]:= Needs@"PhysicalConstants`"D;

In[70]:= h = N@PlanckConstantD@@1DD;
kb = N@BoltzmannConstantD@@1DD;
R = N@MolarGasConstantD@@1DD;

In[73]:= theoD H= 75 * 10^3;
theoD S= -15;
theoParams = 8D H® theoD H, D S® theoD S<;

In[76]:= model =
kb

h
T * ExpB-

D H- T D S

R T
F;

modelParams = 8D H, D S<;

This is what the theoretical plot should look like. The log plot will actually be more informative, so we' ll stick with that.

In[78]:= theoPlot = Plot@model �. theoParams, 8T, 200, 300<, PlotRange ® AllD

Out[78]=

220 240 260 280 300

0.02

0.04

0.06

0.08

Printed by Mathematica for Students

In[79]:= theoLogPlot = LogPlot@model �. theoParams, 8T, 200, 300<D

Out[79]=

220 240 260 280 300

10-6

10-4

0.01

This is how we' ll run our experiment. Each data point will be randomly distributed within 20 % of the exact theoretical value.

In[80]:= uniformRelativeError@x_D :=

ModuleB8T, err, k<,

T = Range@200, 300, 10D;

k = TableB RandomReal@81 - x, 1 + x<D *
kb

h
* t * ExpB-

theoD H- t * theoD S

R * t
F, 8t, T<F;

8T, k<F

In[81]:= 8exp1T, exp1k< = uniformRelativeError@0.2D;

In[82]:= exp1 = Transpose@8exp1T, exp1k<D;
MatrixForm@exp1D

Out[83]//MatrixForm=

200 2.09494 ´ 10-8

210 1.49817 ´ 10-7

220 1.31898 ´ 10-6

230 7.1939 ´ 10-6

240 0.0000376397

250 0.0001751

260 0.000820417

270 0.00309937

280 0.00936587

290 0.0304909

300 0.0744224

2 data_fitting.nb

Printed by Mathematica for Students

In[84]:= exp1ListLogPlot = ListLogPlot@exp1, PlotMarkers ® 8Automatic, Medium<D

Out[84]=

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

220 240 260 280 300

10-6

10-4

0.01

All right, we' ve got our data. Let' s start fitting. Mathematica has a non - linear fitting routine built - in, called FindFit.

In[85]:= exp1Params = FindFit@exp1, model, modelParams, T, Method ® GradientD

Out[85]= 8D H® 65 485.4, D S® -48.2606<

In[86]:= exp1LogPlot = LogPlot@model �. exp1Params, 8T, 200, 300<D

Out[86]=

220 240 260 280 300

10-6

10-5

10-4

0.001

0.01

data_fitting.nb 3

Printed by Mathematica for Students

In[87]:= Show@exp1LogPlot, exp1ListLogPlotD

Out[87]=

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

220 240 260 280 300

10-6

10-5

10-4

0.001

0.01

As we can see, the fit isn' t great. The parameters we got are not very cloes to the theoretical values. However, Mathematica' s
curve-fitting is not to blame. It is actually our whole curve-fitting strategy that is at fault. To see why, let's take a look at how
we're currently approaching curve-fitting.

Curve-fitting is the process of getting "the best fit" to the data. In general, "the best fit" to a set of data is defined as the fit which
minimizes the squared error. Let's take a look at the residuals of our fit to get a better idea of what that means.

In[88]:= exp1Residuals = Table@model �. exp1Params, 8T, 200, 300, 10<D - exp1@@All, 2DD

Out[88]= 97.82161 ´ 10-8, 5.29329 ´ 10-7, 2.59431 ´ 10-6, 0.0000122079, 0.0000466913,

0.000151341, 0.00032003, 0.000537443, 0.00132387, -0.00128602, 0.000281554=

In[89]:= exp1ResidualPlot = ListPlot@exp1Residuals, PlotMarkers ® 8Automatic, Medium<D

Out[89]= æ æ æ æ æ
æ

æ

æ

æ

æ

æ

2 4 6 8 10

-0.0010

-0.0005

0.0005

0.0010

Here we can that the errors are, in general, very small (none of them are larger than 0.001 or so). The "squared error" that we
mentioned previously is just the sum of the squares of the residuals (i.e., S ri

2). Mathematica picked out D H and D S such that the
squared error was as small as possible.

That is not what we want.

Our experiment had relative error. That is, each data point was within 20% of the correct value. Let's take a look at the relative
error of the fit that Mathematica gave us.

4 data_fitting.nb

Printed by Mathematica for Students

In[90]:= ListPlot@exp1Residuals � exp1@@All, 2DD, PlotMarkers ® 8Automatic, Medium<D

Out[90]=

æ

æ

æ

æ

æ

æ

æ

æ æ

æ æ

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

The relative error is terrible. Because Mathematica tried to minimize the absolute error, it cared much more about getting the
later points close. An 80% error at low temperatures is barely even registered as important (but it obviously should be).

If we want to get a good fit for our experiment, we really want to minimize the squared relative error instead of the squared
absolute error. Luckily, Mathematica has an easy way to do that. We can just give it a different function to try and minimize.

In[91]:= weightedNorm@residuals_D := Norm@residuals � exp1kD

With this new weighted function, let's try doing the fit again.

In[92]:= exp1WeightedParams =

FindFit@exp1, model, modelParams, T, NormFunction ® weightedNorm, Method ® GradientD

Out[92]= 8D H® 74 222.8, D S® -18.2268<

In[93]:= exp1WeightedLogPlot = LogPlot@model �. exp1WeightedParams, 8T, 200, 300<D

Out[93]=

220 240 260 280 300

10-6

10-4

0.01

data_fitting.nb 5

Printed by Mathematica for Students

In[94]:= Show@exp1WeightedLogPlot, exp1ListLogPlotD

Out[94]=

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

220 240 260 280 300

10-6

10-4

0.01

Much better. The fit looks great and the parameters we got are very close to the expected values. Let's take a look at the percent
error again.

In[95]:= exp1WeightedResiduals = Table@model �. exp1WeightedParams, 8T, 200, 300, 10<D - exp1k

Out[95]= 9-1.75357 ´ 10-9, 1.90218 ´ 10-8, -9.76426 ´ 10-8, 2.59092 ´ 10-7, 1.54841 ´ 10-6,

5.63254 ´ 10-6, -0.0000782189, -0.000350352, -0.0000806477, -0.00161831, 0.00891345=

In[96]:= ListPlot@exp1WeightedResiduals � exp1@@All, 2DD,
PlotMarkers ® 8Automatic, Medium<, PlotRange ® AllD

Out[96]=

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

2 4 6 8 10

-0.10

-0.05

0.05

0.10

Roughly randomly distributed, and almost all of them are within 20 %. As we have seen, choosing the correct curve-fitting
strategy, based on the type of experiment that was run, is very important. Even good data will yield poor results if it' s not
analyzed correctly.

As an historical aside, note that the amount of computation required to do this non-linear fitting was completely out of reach
before the 1960s or so. Luckily for everyone involved, most commonly used equations in chemistry can be linearized. For instance,
let's take the log of both sides of the Eyring equation:

log k = log B
kb

h
F + log@TD -

D H-TD S

R T
,

which implies that

logB
k

T
F = -

D H

R

1

T
-

D S

R
+ logB

kb

h
F ,

which is wonderful. We can calculate the stuff on the left (as we have both k and T) and then we can plot it versus
1

T
, leading to a

simple linear curve-fitting problem.

6 data_fitting.nb

Printed by Mathematica for Students

In[97]:= exp1Linear = Transpose@81 � exp1T, Log@exp1k � exp1TD<D;
MatrixForm@exp1LinearD

Out[98]//MatrixForm=
1

200
-22.9795

1

210
-21.061

1

220
-18.9323

1

230
-17.2804

1

240
-15.6681

1

250
-14.1716

1

260
-12.6664

1

270
-11.375

1

280
-10.3055

1

290
-9.16021

1

300
-8.30178

In[99]:= ListPlot@exp1Linear, PlotMarkers ® 8Automatic, Medium<D

Out[99]=

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.0040 0.0045 0.0050

-20

-18

-16

-14

-12

-10

-8

Now that we' ve linearized the data, we can do a much easier linear curve-fit using Mathematica's linear fitting routine, Fit.

We're looking for the constant coefficient (which will be
D S

R
+ logB

kb

h
F) and the linear coefficient (which will be -

D H

R
).

In[100]:= exp1LinearFit = Fit@exp1Linear, 81, x<, xD

Out[100]= 21.5738 - 8926. x

In[101]:= 8constCoeff, linearCoeff< = CoefficientList@exp1LinearFit, xD

Out[101]= 821.5738, -8926.<

In[102]:= Solve@8D S� R + Log@kb � hD � constCoeff, -D H� R � linearCoeff<, 8D H, D S<D

Out[102]= 88D S® -18.1772, D H® 74 215.<<

Interestingly, the linear method gives very good results, with significantly less computational effort (this type of linear fit could be
done on a handheld calculator).

data_fitting.nb 7

Printed by Mathematica for Students

