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Molecular Orbital Theory for Organometallic Complexes: [Ti(η8-C8H8)2] 
 
Pentalene (Pn = C8H6, shown below) is an unsaturated hydrocarbon that is related to the 
cyclopentadienyl (Cp) fragment by the edge-sharing ring-fusion of two C5H5 groups. In its doubly 
charged form, C8H6

2−, the pentalene dianion is capable of coordination to transition metals via its π 
system. Using the Hückel approach, we will first generate the MO diagram for the π system of planar 
C8H6

2− in D2h symmetry. We will then consider how the orbitals change upon bending of the fragment 
about the central C-C bond (C2v). Finally, we will develop the qualitative MO diagram for the 
sandwich complex, [Ti(η8-C8H6)2]. 
 
To begin, let us consider the pentalene dianion in D2h symmetry with the following coordinate system: 
 

 
 

	   Generating a representation for the 8 pπ orbitals in D2h symmetry gives: 
 

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz) 
Γπ 8 0 -2 -2 0 -8 2 2 

 
Decomposing gives:  Γπ = 2b2g + 2b3g + au + 3b1u 

 
 Descending to the pure rotational subgroup, D2 gives: 
 

Γπ = 2b2 + 2b3 + a + 3b1 
 
 Applying the projection operator to each unique orbital (φ1, φ2, and φ3) generates the SALCs: 
 

Pa(φ1) = (1)φ1 + (1)φ5 + (1)(−φ5) + (1)(−φ1) ⇒ 0 
Pa(φ2) = (1)φ2 + (1)φ6 + (1)(−φ4) + (1)(−φ8) ⇒ ξ1 = 1/2(φ2 − φ4 + φ6 − φ8) 
Pa(φ3) = (1)φ3 + (1)φ7 + (1)(−φ3) + (1)(−φ7) ⇒ 0 
Pb1(φ1) = (1)φ1 + (1)φ5 + (−1)(−φ5) + (−1)(−φ1) ⇒ ξ2 = 1⁄√2(φ1 + φ5) 
Pb1(φ2) = (1)φ2 + (1)φ6 + (−1)(−φ4) + (−1)(−φ8) ⇒ ξ3 = 1/2(φ2 + φ4 + φ6 + φ8) 
Pb1(φ3) = (1)φ3 + (1)φ7 + (−1)(−φ3) + (−1)(−φ7) ⇒ ξ4 = 1⁄√2(φ3 + φ7) 
Pb2(φ1) = (1)φ1 + (−1)φ5 + (1)(−φ5) + (−1)(−φ1) ⇒ ξ5 = 1⁄√2(φ1 − φ5) 
Pb2(φ2) = (1)φ2 + (−1)φ6 + (1)(−φ4) + (−1)(−φ8) ⇒ ξ6 = 1⁄2(φ2 – φ4 – φ6 + φ8) 
Pb2(φ3) = (1)φ3 + (−1)φ7 + (1)(−φ3) + (−1)(−φ7) ⇒  0 
Pb3(φ1) = (1)φ1 + (−1)φ5 + (−1)(−φ5) + (1)(−φ1) ⇒ 0 
Pb3(φ2) = (1)φ2 + (−1)φ6 + (−1)(−φ4) + (1)(−φ8) ⇒ ξ7 = 1⁄2(φ2 + φ4 – φ6 – φ8) 
Pb3(φ3) = (1)φ3 + (−1)φ7 + (−1)(−φ3) + (1)(−φ7) ⇒ ξ8 = 1⁄√2(φ3 – φ7) 
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To determine the energies for each MO, we must solve the symmetry-factored secular determinant. 
 

  a b1 b2 b3 
  ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 

a ξ1 H11 – ES11        

b1 

ξ2  H22 – ES22 H23 – ES23 H24 – ES24     
ξ3  H32 – ES32 H33 – ES33 H34 – ES34     
ξ4  H42 – ES42 H43 – ES43 H44 – ES44     

b2 ξ5     H55 – ES55 H56 – ES56   

b3 
ξ6     H65 – ES65 H66 – ES66   
ξ7       H77 – ES77 H78 – ES78 
ξ8       H87 – ES87 H88 – ES88 

	  

	   Solving for the Coulomb/resonance integrals and using the Hückel approximation (Hij = α, β, or 0; 
Sij = δij) yields the following: 

	  

H11 =〈ξ1|Ĥ|ξ1〉= 1⁄4(H22 – H24 + H26 – H28 – H42 + … − H86 + H88) = 1⁄4(4α) = α  
H22 =〈ξ2|Ĥ|ξ2〉= 1⁄2(H11 + H15 + H51 + H55) = 1⁄2(2α) = α 
H23 =〈ξ2|Ĥ|ξ3〉= (1⁄2√2)(H12 + H14 + H16 + H18 + H52 + H54 + H56 + H58) = (1⁄2√2)(4β) = (2⁄√2)β 
H24 =〈ξ2|Ĥ|ξ4〉= 1⁄2(H13 + H17 + H53 + H57) = 0 
H32 =〈ξ3|Ĥ|ξ2〉= (1⁄2√2)(H21 + H25 + H41 + H45 + H61 + H65 + H81 + H85) = (1⁄2√2)(4β) = (2⁄√2)β 
H33 =〈ξ3|Ĥ|ξ3〉= 1⁄4(H22 + H24 + H26 + H28 + H42 + … + H86 + H88) = 1⁄4(4α) = α 
H34 =〈ξ3|Ĥ|ξ4〉= (1⁄2√2)(H23 + H27 + H43 + H47 + H63 + H67 + H83 + H87) = (1⁄2√2)(4β) = (2⁄√2)β 
H42 =〈ξ4|Ĥ|ξ2〉= 1⁄2(H31 + H35 + H71 + H75) = 0 
H43 =〈ξ4|Ĥ|ξ3〉= (1⁄2√2)(H32 + H34 + H36 + H38 + H72 + H74 + H76 + H78) = (1⁄2√2)(4β) = (2⁄√2)β 
H44 =〈ξ4|Ĥ|ξ4〉= 1⁄2(H33 + H37 + H73 + H77) = 1⁄2(α + β + β + α) = α + β 
H55 =〈ξ5|Ĥ|ξ5〉= 1⁄2(H11 – H15 – H51 + H55) = α 
H56 =〈ξ5|Ĥ|ξ6〉= (1⁄2√2)(H12 – H14 – H16 + H18 – H52 + H54 + H56 – H58) = (1⁄2√2)(4β) = (2⁄√2)β 
H65 =〈ξ6|Ĥ|ξ5〉= (1⁄2√2)(H12 – H14 – H16 + H18 – H52 + H54 + H56 – H58) = (1⁄2√2)(4β) = (2⁄√2)β 
H66 =〈ξ6|Ĥ|ξ6〉= 1⁄4(H22 – H24 – H26 + H28 – H42 + … – H86 + H88) = 1⁄4(4α) = α 
H77 =〈ξ7|Ĥ|ξ7〉= 1⁄4(H22 + H24 – H26 – H28 + H42 + … + H86 + H88) = 1⁄4(4α) = α 
H78 =〈ξ7|Ĥ|ξ8〉= (1⁄2√2)(H23 – H27 + H43 – H47 – H63 + H67 – H83 + H87) = (1⁄2√2)(4β) = (2⁄√2)β 
H87 =〈ξ8|Ĥ|ξ7〉= (1⁄2√2)(H32 + H34 – H36 – H38 – H72 – H74 + H76 + H78) = (1⁄2√2)(4β) = (2⁄√2)β 
H88 =〈ξ8|Ĥ|ξ8〉= 1⁄2(H33 – H37 – H73 + H77) = 1⁄2(α – β – β + α) = α – β 

 

               ξ1(a) ξ2(b1) ξ3(b1) ξ4(b1) ξ5(b2) ξ6(b2) ξ7(b3) ξ8(b3) 

ξ1(a) α – E        
ξ2(b1)  α – E (√2)β 0     
ξ3(b1)  (√2)β α – E (√2)β     
ξ4(b1)  0 (√2)β α + β – E     
ξ5(b2)     α – E (√2)β   
ξ6(b2)     (√2)β α – E   
ξ7(b3)       α – E (√2)β 
ξ8(b3)       (√2)β α – β – E 
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Solving each square determinant gives the energies of each molecular orbital. Take note that we have 
one 3 × 3 determinant, which is more difficult to solve than our normal 2 × 2 determinant (cannot use 
the simple quadratic equation). Using any one of a variety of solver programs on the Internet, the 
roots to the 3rd order polynomial can be easily determined. The final energies in units of β are: 
 

	   au: E(ψ1) = α ⇒	  0	  
	   b1u: E(ψ2, ψ3, ψ4) ⇒ 2.343β, 0.471β, −1.814β	  
 b2g: E(ψ5, ψ6) ⇒	  1.414β, −1.414β 
 b3g: E(ψ7, ψ8) ⇒	  β, −2β 

 
Using these energies, the orbital coefficients are determined from the simultaneous equations that 
give rise to the secular determinant (see appendix). Combining gives the forms of the MOs (colored 
coded for phase): 
 
 1au(ψ1) = 0.5φ2 − 0.5φ4 + 0.5φ6 − 0.5φ8 
 1b1u(ψ2) = 0.272φ1 + 0.318φ2 + 0.474φ3 + 0.318φ4 + 0.272φ5 + 0.318φ6 + 0.474φ7 + 0.318φ8 

 2b1u(ψ3) = 0.512φ1 + 0.121φ2 − 0.457φ3 + 0.121φ4 + 0.512φ5 + 0.121φ6 − 0.457φ7 + 0.121φ8 

 3b1u(ψ4) = 0.404φ1 − 0.367φ2 + 0.260φ3 − 0.367φ4 + 0.404φ5 − 0.367φ6 + 0.260φ7 − 0.367φ8 

 1b2g(ψ5) = 0.5φ1 + 0.354φ2 − 0.354φ4 − 0.5φ5 − 0.354φ6 + 0.354φ8 

 2b2g(ψ6) = 0.5φ1 − 0.354φ2 + 0.354φ4 − 0.5φ5 + 0.354φ6 − 0.354φ8 
 1b3g(ψ7) = 0.408φ2 + 0.408φ3 + 0.408φ4 − 0.408φ6 − 0.408φ7 − 0.408φ8 

 2b3g(ψ8) = 0.288φ2 − 0.577φ3 + 0.288φ4 − 0.288φ6 + 0.577φ7 − 0.288φ8 
 
We can now generate the MO diagram for the π system of the pentalene dianion within the Hückel 
approximation: 
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Now let us consider folding of the C8 ring to give the bent pentalene dianion, which is the form that 
binds to a single metal center. Within the Hückel approximation, I will roughly estimate the effect of 
this folding by changing the value of certain resonance integrals (Hij) from β to βcosω, where ω 
represents the new angle between adjacent pπ orbitals (see Appendix). If we assume a bending angle 
of 140º (estimated from X-ray data for other Ti pentalene compounds), the secular determinant will 
change with new values for the resonance integrals describing interactions with orbitals φ3 and φ7: 
 

H34 =〈ξ3|Ĥ|ξ4〉= (1⁄2√2)(H23 + H27 + H43 + H47 + H63 + H67 + H83 + H87) = (1⁄2√2)(4βcosω) = (2⁄√2)βcosω 
H43 =〈ξ4|Ĥ|ξ3〉= (1⁄2√2)(H32 + H34 + H36 + H38 + H72 + H74 + H76 + H78) = (1⁄2√2)(4βcosω) = (2⁄√2)βcosω 
H78 =〈ξ7|Ĥ|ξ8〉= (1⁄2√2)(H23 – H27 + H43 – H47 – H63 + H67 – H83 + H87) = (1⁄2√2)(4βcosω) = (2⁄√2)βcosω 
H87 =〈ξ8|Ĥ|ξ7〉= (1⁄2√2)(H32 + H34 – H36 – H38 – H72 – H74 + H76 + H78) = (1⁄2√2)(4βcosω) = (2⁄√2)βcosω 

 
               ξ1(a) ξ2(b1) ξ3(b1) ξ4(b1) ξ5(b2) ξ6(b2) ξ7(b3) ξ8(b3) 

ξ1(a) α – E        
ξ2(b1)  α – E (√2)β 0     
ξ3(b1)  (√2)β α – E (√2)βcosω     
ξ4(b1)  0 (√2)βcosω α + β – E     
ξ5(b2)     α – E (√2)β   
ξ6(b2)     (√2)β α – E   
ξ7(b3)       α – E (√2)βcosω 
ξ8(b3)       (√2)βcosω α – β – E 

 
Re-solving the determinants provides a new set of energies for the a1(b1u) and b1(b3g) symmetry MOs: 
 

a1(b1u): E(ψ2, ψ3, ψ4) ⇒ 2.271β, 0.498β, −1.769β 
b1(b3g): E(ψ7, ψ8) ⇒	  0.920β, −1.920β 

 
Are these energies conceptually reasonable? Yes, orbital 1a1(b1u) is destabilized upon bending because 
it is fully bonding whereas orbitals 2a1 and 3a1 are stabilized because they possess antibonding 
interactions between φ2,4,6,8 and φ3,7. The same logic holds for MOs 1b1 and 2b1. Incorporating these 
results into a Walsh diagram (occupied MOs only) gives us the MO diagram for bent C8H6

2−. Keep in 
mind that the symmetry labels change as we move from D2h to C2v symmetry. 
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Although no crystal structure exists, one proposed geometry of [Ti(C8H6)2] possesses staggered 
pentalene ligands giving rise to overall D2d symmetry. 
 

 
 
To determine the ligand group orbitals for a set of two bent pentalene dianions we take + and – linear 
combinations of each of the filled Hückel type orbitals shown above and consider their resulting 
symmetries [note that in moving from C2v to D2d symmetry, the b1 and b2 orbitals must combine to give 
an e set; use a correlation table!]. The resulting ligand group orbitals are shown below in an overhead 
view along with their symmetries and matches to metal s, p, and d orbitals: 
 

 
 
We are now ready to construct our MO diagram for [Ti(C8H6)2]. Since the two C8H6

2− ligands are 
separated by several Angstroms, I will assume there is negligible interaction between the two ring 
orbitals when giving rise to the ligand group orbitals (in other words, the MO of the form ψ1a1

 + ψ1a1
 is 

of the same energy as ψ1a1
 – ψ1a1

). We shall also convert from the Hückel energy scale (α and β) to eV. 
To do so, I will use a value of ~2.6 eV for β, and a value of ~7 eV for α. The energies of the titanium 
orbitals (3d, 4s, and 4p) can be approximated from the valence orbital ionization energies (VOIEs). 

Ti

1a1 (s, dz2) 1b2 (pz, dxy)

1e (px,y) 2e (dxz,yz)

1b1 (dx2-y2) 1a2

2a1 (s, dz2) 2b2 (pz, dxy)
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Our diagram predicts a complex with 18 electrons occupying M-L bonding orbitals and a purely 
ligand based non-bonding orbital (1a2). This diagram is reasonably consistent with both experimental 
PES data, and calculations using much higher levels of theory (although the true geometry of 
[Ti(η8-C8H6)2] is believed to be other than purely D2d)! 
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Appendix 
 

Example orbital coefficient calculation for b1u MOs (ψ2, ψ3, ψ4): 
 
The MOs will have the form: ψ = c1ξ2 + c2ξ3+ c3ξ4 
Secular equations describing theses MOs are: 	  c1(α – E) + c2(√2)β = 0  AND  c2(√2)β + c3(α + β – E) = 0 
 
Assigning the lowest of the three energies, E = α + 2.343β, to ψ2 gives: 
c1(α – α – 2.343β) + c2(1.414β) = 0 ⇒	  c1 = –(1.414βc2)/(–2.343β) = 0.603c2 
c2(1.414β) + c3(α + β – α – 2.343β) = 0 ⇒	  c3 = –(1.414βc2)/(–1.343β) = 1.053c2 

Applying the normalization condition:	  (0.603c2)2 + c2
2 + (1.053c2)2 = 1 ⇒	  c2 = 0.636; c1 = 0.383; c3 = 0.670 

 
So we have: ψ2 = (0.383)ξ2 + (0.636)ξ3 + (0.670)ξ4 = (0.271)(φ1 + φ5) + (0.318)(φ2 + φ4 + φ6 + φ8) + (0.474)(φ3 + φ7) 
Employing the other two energies for b1u will give coefficients for MOs ψ3 and ψ4. Similar logic can be applied 
for MOs of other symmetry using the appropriate energies. 
 
 
 
 
Description of ω from pentalene bending angle: 
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